I will cover a set of results that are connected and illustrate some interesting techniques about working with finiteness conditions (finitely generated as a ring, module etc) in algebraic geometry over a field.
Initially, I will prove Chevalley’s theorem that the image of a constructible set is constructible. This will involve proving Grothendieck’s generic freeness and Noetherian induction. Next, I will give a couple of applications of Chevalley’s theorem – I will prove that flat maps are open and provide a different proof of the Nullstellensatz.
Chevalley’s Theorem on Constructible sets:
Given a scheme , a (topological) subspace is constructible if it the union of sets of the form
for
open and closed respectively. That is, it is a finite union of locally closed subspaces.
Theorem 1 (Chevalley): Suppose is a finite type morphism between Noetherian schemes. Then the image of a constructible set under the morphism is constructible.
To prove this, we will use Grothendieck’s generic freeness lemma:
Theorem 2 (Grothendieck’s generic freeness): Suppose is a finite type morphism of rings where
is a Noetherian integral domain. Let
be a finite module over
. Then, there is a
such that
is a free
module.
This theorem can obviously be generalized to the case of schemes and coherent sheaves with appropriate finiteness hypothesis. The proof of this theorem proceeds by an application of spreading out:
Proof: For an exact sequence of modules , if
are generically free in the above sense, then clearly so is
. Therefore, by using a sufficiently fine filtration of the given module
, we can reduce to the case where
for a prime ideal
(using the theory of associated primes). In short, we can assume that
and
is an integral domain.
The induction will be on the transcendence degree of over
. If
is a finite extension, then the torsion of
has a closed locus of support and we pick a
that kills the torsion. In general, consider
where
is the fraction field of
.
This is a finite type algebra over and by Noether Normalization (see here), we can find a factorization of the form
where
is finite. Now, it is not necessary that this is true integrally but after inverting by all the relevant denominators, we can find a
such that we have a factorization
as before.
Moreover, since is generically finite over
, we can find some integral generators (this time as a module) such that we have an exact sequence
where the simple factors of have lower transcendence degree than
. By applying the inductive hypothesis, we are done.
To prove Chevalley’s theorem, it clearly suffices to prove that is constructible. This follows using noetherian induction from generic freeness:
Proof: By generic freeness, we can find an open set over the base such that the structure sheaf over the inverse image is free. In particular, either this open set is entirely contained in
or entirely disjoint from it. Either way, it suffices to show that
is constructible but we are then immediately done by Noetherian induction.
We can remove Noetherian assumptions in the standard way by relaxing to finitely presented and expressing our rings as the base of change of a finitely presented map over which is Noetherian.
Let us now use Chevalley’s theorem to prove that flat maps of finite type are open. Initially, let us assume that our schemes are Noetherian. Then the proof proceeds through the following steps:
- Show that for constructible sets, being open is equivalent to containing all generalizations.
- Show that the above reduces, in the case of local rings, to the map being surjective.
- Show that for a map
between local rings and a finite module
over
, being faithfully flat over
is equivalent to being flat and non-zero.
- Putting the pieces together, this shows that flat local maps are always surjective and hence flat maps of finite type are always open since they take open sets to constructible sets by Chevalley.
I will only prove 3 here:
Theorem 3: Support is a map of local rings and
is a finite type module over
. Then, if it is flat (over
) and non zero, it is faithfully flat. That is, for any non zero
-module
,
.
Proof: Suppose were finitely generated. Then notice that
is a finitely generated
module (generated by generators for
and
). Hence, by Nakayama, it suffices to show that
. But this is the tensor product of two non zero vector spaces (by Nakayama) and hence is non zero.
Now, in the general case, we write as a filtered colimit of it’s finitely generated submodules. Since
is flat, the tensor product commutes with the colimit and moreover preserves injective maps. Since each object in the colimit is non zero and the maps in the colimit are injective, the resulting colimit is non-zero too.
In particular, the key example to key in mind is for
a prime ideal of
. This case also suffices to show surjectivity.
Finally, let us prove the Nullstellensatz using these ideas. Recall a version of the nullstellensatz:
Theorem 4: (Nullstellensatz) Suppose is an algebraically closed field and
is a finite type map (as
-algebras) such that
is also a field. Then
.
In particular, this implies that for a finite type scheme over a field, closed points are exactly those with residue field a finite extension of the base field since base change to the algebraic closure does not affect being an integral extension.
This last statement immediately implies that for a map between finite type schemes over a field, the image of a closed point is closed. Moreover, this lets us conclude that the closed points are dense in a finite type scheme over a field since distinguished opens are still finite type.
Proof: By assumption, there is a factorization where the second map is surjective. In particular, we have finite type maps
. By Chevalley, the image of a closed point has to be constructible but it is easy to show that the only constructible points on
are the classical closed points by the division algorithm and using that
is algebraically closed.
Therefore, the map factors through
and since this is true for all
and
is surjective, it implies that
.
A crucial point in the above proof is that we can explicitly classify all ideals in . We can do a similar thing for
and this lets us prove that maximal ideals for finite type algebras over
correspond exactly to having a finite residue field.