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Abstract

We present a framework for information that generalizes Shannon entropy along two orthog-
onal axes: (1) restricting the class of distributions available to model the truth, and (2) assigning
computational costs to models. Classical entropy emerges as a special case, but with an interest-
ing twist: the log-sum inequality, which classically appears in proving subadditivity, is factored
into the optimization step that identifies entropy as a minimum. This clarifies the structure of
classical information theory and provides a natural generalization to computationally bounded
observers.

This is an alternate interpretation of [1], from a different vantage point. The motivations
are the same however: to define entropy from an observer-dependent point of view of bounded
computational power. Of course, this requires giving a definition of an observer in the first place,
which we propose. The set up is as follows.

1 Subjective entropy

We consider the question of trying to approximate a noisy function. Let (X,µX) be set of possible
pasts and Y the set of possible outcomes (both of which we assume to be discrete and finite for
simplicity). Our target noisy function is p : X → P(Y ) where px := p(x) is a probability distribution
on Y .

Our observer O will consist of a space of ”programs” u : X → P(Y ) along with an associated
cost functionK(u) ∈ R≥0. The observer attempts to find the best approximation to p by minimizing
the ”cost to describe p”.

Our main motivation comes from machine learning. For instance, a LLM provides such an
example. We take Y = Σ to be a finite alphabet (the tokens), X = Σ∗ to be finite words on Σ
and p : Σ∗ → P(Σ) to be the distribution on natural text. The transformer architecture with all
parameters fixed then provides us with our observer L - a program u ∈ L corresponds to a specific
choice of parameters (i.e., a trained network) while K(u) can be taken to be the Kolmogorov
complexity of u or even the cost to find u through gradient descent.

Definition 1 (Subjective entropy). The subjective entropy of p with respect to O is defined by

MO(p) := min
u

{K(u) +H(p||u)

where H(p||u) = Ex∼µXH(px ∥ux) = Ex∼µXEy∼px [− log ux(y)] is the cross-entropy.

The cross-entropy has a coding interpretation: H(px ∥ux) is the expected number of bits to en-
code a sample from px using a code optimized for ux. Thus MO(p) is the minimum total description
length: program cost plus expected encoding cost.
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At the optimum u∗, we decompose:

SO(p) = K(u∗) (structural information—cost of the program) (1)

HO(p) = H(p ∥u∗) (residual entropy—encoding cost given program) (2)

If our noisy function is noiseless, i.e., px is always a point mass, then the residual entropy is
simply a measure of the accuracy of our approximation. If we take O to be the set of programs
under some classic resource bound (for instance polynomial time programs), then we are in the
land of classical complexity theory.

On the other hand, if we take X = {∗} to be a singleton, then our programs are simply
distributions. If moreover, we assume that K ≡ 0, then we obtain a generalization of Shannon
entropy.

Definition 2 (Shannon Observer). The Shannon observer S is defined by X = {∗},K ≡ 0 and
S = P(Y ) is the set of all distributions on Y . In this case,

MS(p) = min
u∈P (Y )

H(p||u) = min
u

H(p) +DKL(p||u) = H(p)

since DKL(p||u) ≥ 0 with equality precisely when u = p.

By the same argument, we see that HO(p) ≥ H(p) for any observer O.
This connection to Shannon entropy is the place where the convexity of the logarithm is crucial.

As we will see, subjective entropy satisfies similar properties to Shannon entropy, but the proofs
are essentially ”free”.

To illustrate the idea, let us look at the uniform observer U = { uniform distribution on Y }
with K ≡ 0 and X = {∗} again. For any distribution p, we have

MU (p) = Ep[− log(1/|Y |)] = log |Y |.

This observer cannot exploit any structure in p.

Autoregressive Models and the Shannon Limit

The most natural setting for our framework is autoregressive modeling, where the idealizations
required to recover Shannon entropy become explicit.

Definition 3 (Autoregressive Model). An autoregressive model over alphabet Σ is a program
u : X → P(Y ) where X = Σ∗ (histories) and Y = Σ (next token). Given history x = (x1, . . . , xn−1),
the program outputs a distribution ux ∈ P(Σ) over the next symbol. This induces a joint distribution
on sequences:

pu(x1, . . . , xn) =

n∏
i=1

ux<i(xi)

In our framework, an autoregressive model is precisely a program u : X → P(Y ). The observer
O specifies which programs are available and their costs.

Proposition 1 (Subjective Entropy of Next-Token Prediction). Let p : X → P(Y ) be the true
next-token distribution given history (where X = Σ∗, Y = Σ). Then:

MO(p) = min
u∈O

{K(u) + Ex∼µXEy∼px [− log ux(y)]}

The second term is exactly the per-token cross-entropy loss familiar from language modeling.
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Classical Shannon entropy emerges under three idealizations:

1. All conditionals available: O = {all functions X → P(Y )}

2. Zero model cost: K ≡ 0

3. Ergodic/stationary limit: The entropy rate exists

Theorem 1 (Shannon Entropy as a Limiting Case). Under idealizations (1) and (2), for each
position n:

MS(pn|x<n) = H(Yn|X<n)

where S denotes the Shannon observer. Under all three idealizations, for a stationary ergodic
source:

lim
n→∞

1

n

n∑
i=1

MS(pi|x<i) = H(Y )

where H(Y ) is the Shannon entropy rate.

Proof. Under idealizations (1) and (2), the optimal program at position n is u∗x = px, the true
conditional distribution. The subjective entropy becomes:

MS(pn|x<n) = 0 +H(pn ∥ pn) = H(Yn|X<n)

The entropy rate formula follows from the standard ergodic theorem.

Remark 1 (The Three Gaps from Shannon). Each idealization, when relaxed, creates a gap from
classical entropy:

� Restricted programs: If O ⊊ {all conditionals}, we have MO(p) > H(p). For instance, if
O contains only k-th order Markov models, the gap measures how much structure in p exceeds
k-th order dependencies.

� Positive program cost: If K(u) > 0, there is a trade-off between model complexity and fit.
This is the MDL (Minimum Description Length) perspective: the optimal u∗ may not equal
p, instead preferring a simpler program that accepts higher cross-entropy.

� Finite sequences: Before the asymptotic limit, there are edge effects. The first few tokens
have less history, making prediction harder.

Remark 2 (Connection to Language Modeling). Modern language models (transformers) provide
a concrete instance with:

� O = {transformer architectures with ≤ N parameters}

� K(u) = training cost or parameter count (in various metrics)

The gap MO(pnatural language)−H(pnatural language) measures how far current architectures are from
the “true” entropy of natural language—a quantity that Shannon entropy assumes is achievable for
free.

3



2 Properties of subjective entropy

We now establish that MO satisfies the key properties of entropy (subadditivity, chain rule) in
full generality. The proofs are remarkably simple—they just exhibit feasible solutions. The “hard
work” (log inequalities) only appears when we specialize to the Shannon observer. In this section,
we will want to vary the spaces X,Y , in particular to take products. For simplicity of notation,
we consider the programs u : X → P(Y ) to be implicitly typed with source X and target Y , and
allow for the observer O to have programs u : X → P(Y ) with X,Y varying.

Definition 4 (Product of Programs). For programs ui : Xi → P(Yi), i = 1, 2, we define u1 ⊗ u2 :
X1 ×X2 → P(Y1 × Y2) by

(u1 ⊗ u2)(x1,x2)(y1, y2) = u1,x1(y1)u2,x2(y2).

Definition 5 (Product-Closed Observer). An observer O is product-closed with overhead c if for
all ui : Xi → P(Yi):

1. u1 ⊗ u2 ∈ O

2. K(u1 ⊗ u2) ≤ K(u1) +K(u2) + c

The Shannon observer is product-closed with c = 0.
Conversely, given p : X1 ×X2 → P(Y1 × Y2), we define the marginals by

Definition 6 (Marginals). We marginalize over the second variable by pushing forward px1,x2 along
Y1 × Y2 → Y2 and integrating out the x2. Explicitly,

p1 : X1 → P(Y1); p1,x1(y1) = Ex2∈X2

∑
y2∈Y2

px1,x2(y1, y2)

and similarly for p2.

With these two definitions, we recover the classical sub-additivity of Shannon entropy for sub-
jective entropy.

Theorem 2 (Subadditivity). Let O be product-closed with overhead c. For any joint distribution
p : X1 ×X2 → P(Y1 × Y2) with marginals p1, p2:

MO(p) ≤ MO(p1) +MO(p2) + c (3)

Proof. Let u∗1, u
∗
2 be optimal programs for p1, p2. Consider the product program u∗1 ⊗ u∗2. The key

calculation uses only marginalization (no log inequalities):

H(p ∥u∗1 ⊗ u∗2) = Ex1,x2∈X1×X2E(y1,y2)∼p[− log u∗1(y1)− log u∗2(y2)] (4)

= Ex1∈X1Ey1∼p1 [− log u∗1,x1
(y1)] + Ex2∈X2Ey2∼p2 [− log u∗2,x2

(y2)] (5)

= H(p1 ∥u∗1) +H(p2 ∥u∗2) (6)

The equalities all follow simply from the definitions of marginalization and product measures with-
out using any specific properties of the log function. As a consequence,

MO(p) ≤ K(u∗1 ⊗ u∗2) +H(p ∥u∗1 ⊗ u∗2) (7)

≤ [K(u∗1) +K(u∗2) + c] + [H(p1 ∥u∗1) +H(p2 ∥u∗2)] (8)

= MO(p1) +MO(p2) + c
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When we specialize to the Shannon observer, we recover classical subadditivity H(p) ≤ H(p1)+
H(p2).

When O = S (so K ≡ 0, c = 0):

H(p) = MS(p) ≤ MS(p1) +MS(p2) = H(p1) +H(p2) (9)

Thus, our framework factors the classical proof of subadditivity:

1. Structural step (Theorem 2): M(p) ≤ M(p1) +M(p2)—easy, no log inequalities

2. Optimization step: MS(p) = H(p)—uses DKL ≥ 0

The classical proof combines these steps, obscuring the factorization.
Similarly, the chain rule holds in the general framework. The idea is that we can decompose

the task of approximating p into two steps: first approximate a “summary statistic” of p, then
approximate p given that statistic.

Setup for the Chain Rule

Let p : X → P(Y ) be our target and π : Y → Z a projection (surjective map) extracting some
information from Y . We think of Z as a coarsening or summary of Y .

Definition 7 (Pushforward). The pushforward π∗p : X → P(Z) is defined by

(π∗p)x(z) =
∑

y:π(y)=z

px(y) = px(π
−1(z)).

This is the distribution on Z induced by first sampling y ∼ px, then computing z = π(y).

Definition 8 (Conditional Distribution). The conditional p|π : X × Z → P(Y ) is defined by

(p|π)x,z(y) =

{
px(y)

(π∗p)x(z)
if π(y) = z

0 otherwise

This is the distribution on Y given that we know x and have observed z = π(y). Note that (p|π)x,z
is supported on the fiber π−1(z).

Definition 9 (Conditional Subjective Entropy). The conditional subjective entropy of p given π
is:

MO(p|π) := min
u:X×Z→P(Y )

{
K(u) + Ex∼µXEz∼(π∗p)x [H((p|π)x,z ∥ux,z)]

}
where the inner expectation is over z distributed according to the pushforward (π∗p)x.

The key insight is that approximating p can be decomposed into: (1) approximating π∗p (the
summary), and (2) approximating p|π (the detail given the summary).

Definition 10 (Composition of Programs). Given u : X → P(Z) (a program for the summary)
and v : X × Z → P(Y ) (a conditional program for Y given Z), we define the composed program
u ◦π v : X → P(Y ) by

(u ◦π v)x(y) = ux(π(y)) · vx,π(y)(y).

Definition 11 (Composition-Closed Observer). An observer O is composition-closed with over-
head c (with respect to π : Y → Z) if for all programs u : X → P(Z) and v : X × Z → P(Y ) in
O:
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1. u ◦π v ∈ O

2. K(u ◦π v) ≤ K(u) +K(v) + c

Theorem 3 (Chain Rule). Let O be composition-closed with overhead c with respect to π : Y → Z.
Then:

MO(p) ≤ MO(π∗p) +MO(p|π) + c

Proof. Let u∗ be optimal for π∗p and v∗ be optimal for p|π. Consider the composed program
u∗ ◦π v∗.

Key calculation: The cross-entropy factors:

H(p ∥u∗ ◦π v∗) = ExEy∼px

[
− log u∗x(π(y))− log v∗x,π(y)(y)

]
(10)

= ExEy∼px [− log u∗x(π(y))] + ExEy∼px

[
− log v∗x,π(y)(y)

]
(11)

For the first term, since z = π(y) and y ∼ px implies z ∼ (π∗p)x:

ExEy∼px [− log u∗x(π(y))] = ExEz∼(π∗p)x [− log u∗x(z)] = H(π∗p ∥u∗)

For the second term, we condition on z = π(y):

ExEy∼px

[
− log v∗x,π(y)(y)

]
= ExEz∼(π∗p)xEy∼(p|π)x,z

[
− log v∗x,z(y)

]
= H(p|π ∥ v∗)

Therefore:

MO(p) ≤ K(u∗ ◦π v∗) +H(p ∥u∗ ◦π v∗) (12)

≤ [K(u∗) +K(v∗) + c] + [H(π∗p ∥u∗) +H(p|π ∥ v∗)] (13)

= MO(π∗p) +MO(p|π) + c

When is the Chain Rule an Equality?

The chain rule gives an upper bound. For a matching lower bound, we need a converse condition.

Definition 12 (Decomposition of Programs). Every program u : X → P(Y ) decomposes through
π as u = ū ◦π u|π where:

� ū : X → P(Z) is the marginal: ūx = π∗(ux)

� u|π : X × Z → P(Y ) is the conditional: (u|π)x,z(y) = ux(y)/ūx(z) for π(y) = z

This is simply the factorization ux(y) = ūx(π(y)) · (u|π)x,π(y)(y).

Definition 13 (Decomposition-Closed Observer). An observer O is decomposition-closed with
overhead c′ (with respect to π : Y → Z) if for every program u : X → P(Y ) in O:

1. ū ∈ O and u|π ∈ O

2. K(u) ≥ K(ū) +K(u|π)− c′

The second condition says that decomposing a program does not make it cheaper (up to overhead
c′). This is the reverse of composition-closed.
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Theorem 4 (Chain Rule Equality). Let O be both composition-closed with overhead c and decomposition-
closed with overhead c′ (with respect to π : Y → Z). Then:

MO(π∗p) +MO(p|π)− c′ ≤ MO(p) ≤ MO(π∗p) +MO(p|π) + c

Proof. The upper bound is Theorem 3. For the lower bound, let u∗ be optimal for p. By
decomposition-closure, ū∗ ∈ O and u∗|π ∈ O.

The cross-entropy factors (same calculation as before):

H(p ∥u∗) = H(π∗p ∥ ū∗) +H(p|π ∥u∗|π)
Therefore:

MO(p) = K(u∗) +H(p ∥u∗) (14)

≥ [K(ū∗) +K(u∗|π)− c′] + [H(π∗p ∥ ū∗) +H(p|π ∥u∗|π)] (15)

= [K(ū∗) +H(π∗p ∥ ū∗)] + [K(u∗|π) +H(p|π ∥u∗|π)]− c′ (16)

≥ MO(π∗p) +MO(p|π)− c′ (17)

where the last inequality uses that ū∗ is feasible (not necessarily optimal) for π∗p, and similarly for
u∗|π.

Remark 3 (When c = c′ = 0: Exact Equality). If O is both composition-closed and decomposition-
closed with c = c′ = 0, then:

MO(p) = MO(π∗p) +MO(p|π)
This is the case for the Shannon observer, where K ≡ 0 trivially satisfies both conditions.

Remark 4 (Classical Chain Rule). In the Shannon case (O = S, K ≡ 0), this becomes:

H(Y ) = H(π(Y )) +H(Y |π(Y ))

which is the classical chain rule as an equality.

Remark 5 (Interpretation). The chain rule says: to describe Y , we can first describe the summary
π(Y ), then describe Y given the summary.

Equality holds when there is no “compression advantage” to representing p jointly versus as
(summary, conditional). If knowing the summary helps compress the conditional description (shared
structure), you get strict inequality M(p) < M(π∗p) +M(p|π).

3 Connection to Epiplexity

Our framework connects to the recent notion of epiplexity [1].

Definition 14 (Epiplexity, after Finzi et al.). Fix a time bound T . Let OT be time-bounded
probabilistic programs. The epiplexity and time-bounded entropy of distribution p are:

ST (p) = |u∗| (program length of optimal program) (18)

HT (p) = Ey∼p[− log u∗(y)] (cross-entropy with optimal program) (19)

where u∗ = argminu∈OT
{|u|+ Ey∼p[− log u(y)]}.

This is precisely our framework with:

� O = OT (time-bounded programs)

� K(u) = |u| (program length)

Our contribution is to clarify the structure: epiplexity combines two generalizations (restricted
programs and positive costs) that can be studied independently.
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4 Shearer’s Inequality for Subjective Entropy

We now generalize Shearer’s inequality, a powerful refinement of subadditivity, to subjective en-
tropy.

Classical Shearer’s Inequality

Let Y = Y1 × · · · × Yn and let S1, . . . , Sm ⊆ [n] be subsets such that each index i ∈ [n] appears in
at least k of the subsets. For S ⊆ [n], write YS =

∏
i∈S Yi and let πS : Y → YS be the projection.

Theorem 5 (Classical Shearer). For any distribution p on Y :

H(Y1, . . . , Yn) ≤
1

k

m∑
j=1

H(YSj )

Special cases include:

� Subadditivity: Si = {i}, k = 1 gives H(Y ) ≤
∑

iH(Yi)

� Han’s inequality: Si = [n] \ {i}, k = n− 1 gives H(Y ) ≤ 1
n−1

∑
iH(Y[n]\{i})

The Fractional Product Construction

To generalize Shearer, we need to construct a program for p on Y from programs uj on the marginals
YSj .

Definition 15 (Fractional Product). Given programs uj : X → P(YSj ) for j = 1, . . . ,m, the
fractional product with exponent 1/k is:

u⊗x (y) =
1

Zx

m∏
j=1

uj,x(ySj )
1/k

where Zx =
∑

y∈Y
∏m

j=1 uj,x(ySj )
1/k is the normalization constant.

Proposition 2 (Cross-Entropy of Fractional Product).

H(p ∥u⊗) = Ex[logZx] +
1

k

m∑
j=1

H(πSj ,∗p ∥uj)

Proof.

H(p ∥u⊗) = ExEy∼px

[
− log u⊗x (y)

]
(20)

= ExEy∼px

logZx −
1

k

∑
j

log uj,x(ySj )

 (21)

= Ex[logZx] +
1

k

∑
j

ExEy∼px

[
− log uj,x(ySj )

]
(22)

= Ex[logZx] +
1

k

∑
j

H(πSj ,∗p ∥uj)

The key observation is that Shearer’s inequality holds if Ex[logZx] is bounded.
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Shearer-Closed Observers

Definition 16 (Shearer-Closed Observer). An observer O is Shearer-closed with respect to cover
(S1, . . . , Sm) with coverage k, overhead c, and normalization bound c′ if for any programs uj : X →
P(YSj ) in O:

1. The fractional product u⊗ ∈ O

2. K(u⊗) ≤ 1
k

∑m
j=1K(uj) + c

3. Ex[logZx] ≤ c′ (normalization bound)

Condition (3) is where the “log inequality” hides. For the Shannon observer with optimal
choices uj = πSj ,∗p, the classical Shearer inequality implies logZ ≤ 0.

Theorem 6 (Shearer’s Inequality for Subjective Entropy). Let O be Shearer-closed with respect to
(S1, . . . , Sm) with coverage k, overhead c, and normalization bound c′. Then for any p : X → P(Y ):

MO(p) ≤
1

k

m∑
j=1

MO(πSj ,∗p) + c+ c′

Proof. Let u∗j be optimal for πSj ,∗p. Consider the fractional product u⊗ built from these.
By the cross-entropy formula and the Shearer-closed conditions:

MO(p) ≤ K(u⊗) +H(p ∥u⊗) (23)

≤

1

k

∑
j

K(u∗j ) + c

+

Ex[logZx] +
1

k

∑
j

H(πSj ,∗p ∥u∗j )

 (24)

≤ 1

k

∑
j

[
K(u∗j ) +H(πSj ,∗p ∥u∗j )

]
+ c+ c′ (25)

=
1

k

∑
j

MO(πSj ,∗p) + c+ c′

The Shannon Observer Satisfies Shearer

Proposition 3. The Shannon observer S is Shearer-closed with c = c′ = 0 for any cover with
coverage k.

Proof. Conditions (1) and (2) are trivial since K ≡ 0 and all distributions are in S.
For condition (3), we need logZ ≤ 0 when uj = πSj ,∗p (the optimal choices). This is equivalent

to showing: ∑
y

∏
j

p(ySj )
1/k ≤ 1

This is precisely the content of the classical Shearer inequality! Indeed, classical Shearer can be
written as: ∑

y

p(y) log p(y) ≥ 1

k

∑
j

∑
y

p(y) log p(ySj )

which, by convexity arguments, implies the normalization bound.
Alternatively: by Hölder’s inequality with exponents summing to k (each coordinate appears k

times), we have Z ≤ 1.

9



Remark 6 (Where the Log Inequality Hides). Just as with subadditivity and the chain rule, the
log inequality in Shearer appears in the optimization/normalization step (showing logZ ≤ 0) rather
than in the structural step (the algebraic manipulation of cross-entropies).

For general observers, we simply assume the normalization bound as part of the Shearer-closed
condition. This isolates exactly what property is needed beyond the algebraic structure.

Remark 7 (Special Cases). � For Si = {i} and k = 1: Shearer reduces to subadditivity, and
the fractional product is just the ordinary product. The normalization bound Z ≤ 1 is trivial
(it’s an equality).

� For m = 2, S1 ∪ S2 = [n], S1 ∩ S2 = ∅, k = 1: This is exactly subadditivity, recovered as a
special case.
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