# Noether Normalization, Spreading out and the Nullstellensatz .

Hilbert’s Nullstellensatz plays a central role in algebraic geometry. It can be seen as the fundamental link between the modern theory of schemes and the classical theory of algebraic varieties over fields. Since this is one of the first results a novice in algebraic geometry learns and is often proved very algebraically, one often does not gain a good understanding of the proof till much later.

I will present three proofs of the Nullstellensatz found in the literature from a geometric perspective. This will highlight the role of the “spreading out and specializing” common to the proofs that might not be obvious from an algebraic presentation. The last proof is a very short, self contained demonstration of the techniques. Along the way, we will also see a geometric proof of Noether Normalization.

The proof of Hilbert’s lemma is usually broken up into the following two steps: 1) Prove the weak Nullstellensatz and 2) Derive the strong Nullstellensatz using the Rabinowitsch or other means. I will be focusing solely on the first step in this post. Nothing in this is original except for the presentation.

# Congruent Numbers and Elliptic Curves

A congruent number $n$ is a positive integer that is the area of a right triangle with three rational number sides. In equations, we are required to find rational positive numbers $a,b,c$ such that: $\displaystyle a^2+b^2 = c^2$    and $\displaystyle n = \frac12 ab.$                       (1)

The story of congruent numbers is a very old one, beginning with Diophantus. The Arabs and Fibonacci knew of the problem in the following form:

Find three rational numbers whose squares form an arithmetic progression with common difference $k$.

This is equivalent to finding integers $X,Y,Z,T$ with $T\neq 0$ such that $Y^2 - X^2 = Z^2 - Y^2 = k$ which reduces to finding  a right triangle with rational sides $\displaystyle \frac{Z+X}{T}, \frac{Z-X}{T}, \frac{2Y}{T}$

with area $k$. This is the congruent number problem for $k$. The Arabs knew several examples of congruent numbers and Fermat stated that no square is a congruent numbers. Since we can scale triangles to assume that $n$ is square free, this is equivalent to saying that $1$ is not a congruent number.

As with many other problems in number theory, the proof of this statement had to wait four centuries for Fermat. The problem led Fermat to discover his method of infinite descent.

In more recent times, the problem has been fruitfully translated into one about Elliptic Curves. We perform a rational transformation of the defining equations (1) for a congruent number in the following way. Set $x = n(a+c)/b$ and $y = 2n^2(a+c)/b$. A calculation shows that: $\displaystyle y^2 = x^3 - n^2x.$                                          (2)

and $y \neq 0$. If $y = 0$, then $a=-c$ and $b = 0$ but then $n = \frac12 ab = 0$. Conversely, given $x,y$ satisfying (2), we find $a = (x^2-y^2)/y, b = 2nx/y$ and $c = x^2+y^2/n$ and one can check that these numbers satisfy (1).

The projective closure of (2) defines an elliptic curve that we will call $E_n$. We are interested in finding rational points on it that do not satisfy $y=0$. I will prove that $n$ is a congruent number precisely when $E_n$ has positive rank.

The proof is an interesting use of Dirichlet’s Theorem on Arithmetic Progressions and some neat ideas about Elliptic Curves and their reductions modulo primes. I will essentially assume the material in Silverman’s first book and the aforementioned Dirichlet’s Theorem.

# Descent on Vector Spaces and Cohomology

It is quite often of interest to study the properties of some variety ${X/\mathbb Q}$. However, it is generally much easier to study varieties over algebraically closed fields and so we need some way of translating a property of ${X_{\overline{\mathbb Q}}/\overline{\mathbb Q}}$ to ${X/\mathbb Q}$. This idea is known as descent and in this post, I would like to say a little bit about the simplest example of descent – over vector spaces.

Let ${L/K}$ be an extension of fields and ${V}$ a vector space over ${K}$. Consider ${W = V\otimes_K L }$. The Galois Group ${G = \mathop{Gal}(L/K)}$ acts on ${W}$ through the second factor (not by linear actions but by semi-linear ones – see below). One can consider the ${K}$-vector space ${W^G}$. This is the vector space fixed by ${G}$.

Theorem 1 (Descent of Vector Spaces) The natural map ${W^G\otimes_K L \rightarrow W}$ is an isomorphism. In particular, if ${W}$ is finite dimensional, then ${\dim_K W^G = \dim_L W}$.

It is not hard to prove this theorem directly (Theorem 2.14 in these notes of K. Conrad) but I would like to relate it to another theorem. This is also well known and is a generalization of the famous Hilbert’s Theorem 90. Let ${{GL}_n(L)}$ be the group of invertible ${n}$-dimensional matrices over ${L}$ and consider the cohomology ${H^1(G,{GL}_n(L))}$. This is not a group unless ${n=1}$ since ${{GL}_n(L)}$ is non-commutative in general. However, it is a pointed set and we have the following theorem:

Theorem 2 (Hilbert’s 90) $\displaystyle H^1(G,{GL}_n(L)) = \{0\}.$

Hilbert stated the above theorem (in a disguised form) for ${n=1}$ and ${L/K}$ a finite cyclic extension. Noether generalized the theorem to arbitrary extensions. I do not know who is responsible for the generalization to general linear groups but I saw this theorem first in Serre’s “Galois Cohomology”.

In this post, I will show that the above theorems are equivalent in the following sense: