A groupoid is category where all the morphisms are isomorphisms and groupoid cardinality is a way to assign a notion of size to groupoids. Roughly, the idea is that one should weigh an object inversely by the number of automorphisms it has (and we only count each isomorphic object as one object).

It is important to count only one object from each isomorphism class since we want the notion of groupoid cardinality to be invariant under equivalences of groupoids (in the sense of category theory) and every category is equivalent to it’s skeleton. For further motivation for the idea of a groupoid cardinality, see Qiaochu Yuan’s post on them.

This seems like quite a strange thing to do but it turns out to be quite a useful notion. One of my favorite facts about Elliptic curves is that the groupoid cardinality of the supersingular elliptic curves in characteristic p is ! See the Eichler-Deuring mass formula.

Another interesting computation along these lines is that the *number* of finite sets is . One can ask this question of various groupoids and the answer is often interesting. I will ask it today of semi-simple finite algebras of order . By an algebra, I will always implicitly mean commutative in this post.