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1. INTRODUCTION

This note covers the basic theory of p-adic modular forms. I will define the notion of a
p-adic modular form, define a corresponding weight and use these ideas to construct the
Kubto-Leopoldt p-adic zeta function.

First however, I will need to cover the basic theory of modular forms with Fourier coeffi-
cients in Fp. I will also prove some congruences as an application and show a connection
to the moduli theoretic interpretation of modular forms.

To get off the ground, I will need to recall some classical results about modular forms in
characteristic 0. There will be no proofs in this section:

2. MODULAR FORMS OVER C

Recall that modular forms are functions from the upper half plane to the complex numbers
f : H −→ C that satisfy a functional equation:

f(
az + b

cz + d
) = (cz + d)kf(z), ad− bc = 1, a, b, c, d ∈ Z.
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The k is called the weight of f and is an even non-negative integer. They also satisfy a
growth condition that can be phrased in the following way:

Note that f(z + 1) = f(z) and therefore, setting q = e2πiz , there is a Fourier expansion
f =

∑
n anq

n. We will demand that q ≥ 0. This is equivalent to saying the function has a
well defined value as we go to infinity along the imaginary axis.

From the definition, it immediately follows that the space of modular forms of weight k
is a vector space over C. It is denoted by Mk. It is also clear that the product of modular
forms of weight k, l produces a modular form of weight k+l. Thus, we can define a graded
algebra:

M =
⊕
k≥0

Mk.

Using the Riemann-Roch and an interpretation of modular forms as sections of a line bun-
dle on a curve, one can prove thatMk is finite dimensional. Now, let us see some examples
of modular forms. Our first example is a sequence of modular forms called Eisenstein
series indexed by the weight k ≥ 4 and even:

Ek = 1− 2k

Bk

∑
n≥1

σk−1(n).

The Bk are Bernoulli numbers defined by the following generating function:

t

et − 1
=

∑
n≥0

Bn
tn

n!

and σk−1(n) =
∑

d|n d
k−1 is the standard divisor sum function.

We will see soon that while E2 is not a modular form, it satisfies a similar functional equa-
tion and will be important soon. We will make particular use of the following three func-
tions:

P = E2 = 1− 24
∑
n≥1

σ1(n)qn

Q = E4 = 1 + 240
∑
n≥1

σ3(n)qn

R = E6 = 1− 504
∑
n≥1

σ5(n)qn

We will sometimes think of Q,R as transcendental variables and other times as the modu-
lar forms. This is not too bad an abuse of notation since E4, E6 are algebraically indepen-
dent even over C. Hopefully, it will be clear from the context.

Our second example of a modular form is the modular discriminant function:

∆ = q[
∏
n≥1

(1− qn)]24 =
∑
n≥0

τ(n)qn.

Note that τ(0) = 0, τ(1) = 1. By calculating the dimension of the space of modular forms
of weight 12, one can prove that 1728∆ = E3

4 − E2
6 .

Since the leading non-zero term is 1 and E4, E6,∆ have fourier coefficients in Z, one can
prove that any modular form f can be written as a polynomial F (E4, E6,∆) and further, if
f ∈ S[[q]] for some ring S ⊂ C, then F is also a polynomial with coefficients in S.
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Let us define MS to be the subring of M consisting of the modular forms that have coeffi-
cients in S. Then, the above shows that we have an isomorphism

S[Q,R,∆]/(1728∆ = Q3 −R2) −→MS

where the map is the obvious one. We also see that if 6 is invertible in S, then the polyno-
mial ring on the left is simply S[Q,R].

Finally, we will need to define a derivation on the space of modular forms. First, we define
an operator θ(f) = qf ′(q) where we differentiate formally with respect to q. In other words,
it sends the Fourier coefficients an to nan.

This is clearly a derivation but unfortunately, θ(f) will usually not be a modular form. We
modify it so that we do get a modular form in the following way:

∂(f) = 12θ(f)− kPf.

It is a simple computation to prove that ∂ is a derivation. Showing that is a modular form
turns out to be equivalent to proving the functional equation for P = E2. The easiest way
to figure this out is to show first that P is the logarithmic derivative of ∆ (using the product
representation for ∆) and use the functional equation of ∆ to derive the corresponding one
for P .

3. MODULAR FORMS WITH COEFFICIENTS IN Fp

Let S = Z(p) and for the moment, assume that p ≥ 5. Then, in the first section, we showed
that S[Q,R] ∼= MS since ∆ is an integral combination of Q,R in Fp. Let us now define M
to be the subring of Fp consisting of power series that are the reduction of elements in MS .
We can consider the following commutative diagram:

Z(p)[Q,R] MS

Fp[Q,R] M

∼=

The top vertical map corresponds to reduction maps while the horizontal maps evaluate
Q,R to E4, E6. The bottom vertical map is induced by the rest of the diagram. That is, it
sends Q,R −→ Q,R ∈M ⊂ Fp[[q]].
Recall that in M , E4 and E6 have weight 4 and 6 respectively. We will define a grading on
the polynomial rings so that Q,R have weights 4, 6 respectively. Then, in characteristic 0,
modular forms correspond precisely to homogeneous polynomials in Q,R and the maps
are maps of graded algebras that preserve the grading.

We would like to understand the bottom horizontal arrow better but first, let us establish
some notation. Let F (Q,R) be the polynomial corresponding to a modular form f in char-
acteristic 0. Then, by F (Q,R), we denote the reduction of the polynomial F in Fp[Q,R]

and by F (Q,R), we mean the corresponding modular form in M.

Now, we define A(Q,R) to be the polynomial that maps to Ep−1 and B(Q,R) to be the
polynomial mapping to Ep+1. These are polynomials in characteristic 0 and they are ho-
mogeneous of weight p− 1 and p+ 1 respectively.
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3.1. Computing a presentation of M : Since the dotted arrow is surjective, it simply re-
mains to find the kernel. Let this kernel be the ideal I ⊂ Fp[Q,R]. Note that since the
image of the dotted map is an integral domain, I has to be a prime ideal.

Let us now guess an element in the kernel. The main tool we use will be the congruences
of Von Staudt-Clausen and Kummer regarding Bernoulli numbers.

Theorem 1 (Von-Staudt, Clausen and Kummer). Let p be a prime number. Then the following
statements hold:

• if p− 1|r, then pBr/2r is a p-adic integer.
• if p−1 - r, thenBr/2r is a p-adic integer and modulo p, it depends only on r (mod p−1).

Corollary 2. Thus, we see that in M :

A(Q,R) = Ep−1 ≡ 1 (mod p)

and furthermore
B(Q,R) ≡ P (mod p).

In particular, P is a modular form mod p! This will be crucial in the theory. Also,A(Q,R)−
1 is in I .

Since p ≥ 5, one can see that one of Q,R 6∈ Fp and so the image is not a field. This shows
that I is a prime ideal of height exactly 1.

Therefore, if we can show that A − 1 is irreducible, we will have shown that I = (A − 1).
This is what we now proceed to do:

Theorem 3. For A,B, elements of Fp[Q,R] as defined above:

(1) ∂A = B and ∂B = −QA.
(2) A has no repeated factors and is co-prime to B.
(3) A− 1 is absolutely irreducible.

Proof. This theorem is a statement purely about Fp[Q,R] as an abstract algebra and the
proof is mostly commutative algebra. The only input from modular form theory will be in
proving the first step:

(1) By the above corollary, we see that θA(Q,R) = 0 inM . Now, consider F = ∂A−(p−1)B
in Fp[Q,R]. This is homogeneous of weight p + 1. Under the dotted arrow, F maps to
∂A− kB which is equal to ∂A(Q,R)− kPA(Q,R) = θEp−1 = 0 by the corollary.

That is, we have shown that ∂A(Q,R) − (p − 1)B(Q,R) = ∂Ep−1 − Ep+1 is a p-integral
modular form of weight p+ 1 that reduces to 0 mod p. As such, it must be a polynomial of
Q,R with coefficients in pZ(p) and hence F = 0 in Fp[Q,R]. That is, ∂A = B as required.

The second part of (1) follows exactly the same proof by considering F = ∂B − QA in
Fp[Q,R] and using that ∂P = Q in characteristic 0.

(2) Recall that A is homogeneous of degree p − 1 in Q,R. Therefore, any factor of it (over
Fp) is of the form (Q3− cR2) for some c ∈ Fp. Note that c 6= 1 since under the dotted arrow,
A has an expansion with non zero constant term while Q3 − R2 has no constant term. Let
us now assume for contradiction that:

A(Q.R) = (Q3 − cR2)nX

where n ≥ 2 and X is coprime to (Q3 − cR2). The standard way one gains information
about repeated factors is by comparing a polynomial to it’s derivatives but here, it is more
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useful to use the derivation ∂. A simple computation shows us that:

B = ∂A = (Q3 − cR2)n−1Y and −QA = ∂2A = (Q3 − cR2)n−2Z

where Y,Z are coprime to (Q3− cR2) (since c 6= 1). However, this is clearly a contradiction
and so n = 1. This also shows that A is coprime to B.

(3) Assume for contradiction that A − 1 is reducible (over Fp) and we have a non trivial
absolutely irreducible factor of A− 1:

ϕ(Q,R) = ϕn(Q,R) + ϕn−1(Q,R) + . . .

where the ϕk are the degree k homogeneous pieces. Let c be a primitive root of p− 1 in Fp.
Observe that A(c4Q, c6R) = cp−1A(Q,R) = A(Q,R) by homogeneity.

Therefore, ϕ(c4Q, c6R) is also a factor of A − 1. Since Q −→ c4Q,R −→ c6R is an auto-
morphism of Fp[Q,R] and ϕ(Q,R) is absolutely irreducible, we see that the same is true
of ϕ(c4Q, c4R) and ϕ(Q,R)ϕ(c4Q, c6R) divides A − 1. On comparing the highest weight
pieces, we see that ϕn(Q,R)ϕn(c4Q, c6R) = cnϕ2

n(Q,R) divides A. However, this contra-
dicts part (2).

�

Thus, we have shown that I = (A − 1) and M ∼= Fp[Q,R]/(A − 1) as Fp−algebras. In fact
there is an induced grading by the group Z/(p− 1) on the algebras such that the modular
forms mod p are precisely the homogeneous elements.

3.2. M as a graded algebra: Consider Mk to be the space of modular forms of weight k as
a submodule of Z(p)[Q,R]. Then, denote by Mk the reduction to Fp[Q,R].

Note that multiplication by A(Q,R) is an injective map from Mk −→ Mk+p−1. We will
think of this as an inclusion and define:

Mα =
⋃
k∈α

Mk for α ∈ Z/(p− 1).

Clearly, Fp[Q,R] =
⊕

α∈Z/(p−1)Mα. In fact, I claim that they are disjoint even after we take
the quotient:

Theorem 4. We have the decomposition into homogeneous pieces:

Fp[Q,R]/(A− 1) =
⊕

α∈Z/(p−1)

Mα.

Proof. Suppose not. Then there exist f, g such that f(Q,R) = g(Q,R) (mod A − 1) where
f ∈ Mα and g ∈ Mβ and α 6= β. By multiplying f, g by A, we can further assume that f, g
are homogeneous of weight k, l.

That is, f(Q,R) = g(Q,R) + (A − 1)h(Q,R) for some h(Q,R) ∈ Fp[Q,R]. Let h(Q,R) =∑
γ∈Z/(p−1) hγ(Q,R) where hγ(Q,R) is a sum of polynomials in Mγ .

From the direct sum decomposition of Fp[Q,R], we see immediately that (A − 1)hα = f ,
(A − 1)hβ = g and hγ = 0 otherwise but this clearly contradicts the assumption that f, g
are homogeneous.

�
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This theorem is particularly interesting because it lets us assign weights to modular forms
with coefficients in Fp (by pushing the grading through the isomorphism established in
the previous section: M ∼= Fp[Q,R]/(A − 1). The modular forms in M are precisely the
homogeneous elements, exactly as i characteristic 0.

In fact, by defining a slightly finer invariant, we will see that our work so far immediately
gives us several congruences on the coefficients of modular forms.

3.3. Congruences on the coefficients of modular forms: Given f ∈ Mα, we know by the
above that is the reduction of some characteristic 0 modular form g. In fact, there will be
several such choices and all of them will differ by multiples of A(Q,R) = Ep−1 as can be
easily verified. Thus, we can define for f ∈Mα:

ω(f) = min{deg(g) : g ∈MS such that g = f}.

Equivalently, it is the unique modular form in characteristic zero that reduces to f and is
not divisible by A(Q,R) (thinking of them as elements in Z(p)[Q,R]).

How is this useful? Well, take p = 7. Recall that the differential operator θ takes Fp modular
forms to Fp modular forms. We would like to study how ω interacts with θ:

Theorem 5. For f ∈Mα, let ω(f) = k. Recall that k (mod p− 1) = α. The following is true:

ω(θ(f)) ≤ ω(f) + p+ 1

and we have equality precisely when α 6= 0 or equivalently, k 6= 0 (mod p− 1).

Proof. Let g be the characteristic 0 modular form of weight ω(f) such that g = f . Then, by
the definition of θ, we have:

θ(f) = θ(g) = A∂(g) + kBg

since A,B reduce to 1, P respectively. However, A∂(g) + kBg is a modular form of weight
k + p+ 1 and so, ω(θ(f)) ≤ k + p+ 1.

Moreover, suppose p|k. Then θ(f) = A∂(g) = ∂(g). This shows that ω(θ(f)) ≤ k + 2.

Conversely, if ω(f) < k + p + 1, then A(Q,R)|A(Q,R)∂(g) + kB(Q,R)g. By assumption
A(Q,R) does not divide g and since A(Q,R) is irreducible (by Theorem 3), we have that
A(Q,R)|B(Q,R). But this contradicts Theorem 3 and we are done. �

This immediately lets us prove congruences. Take p = 5. Consider f = R = E6. Certainly,
ω(f) = 6 and since 5 - 6, we have ω(θ(f)) = 6 + 5 + 1 = 12.

That is, θ(f) is equal to the reduction of some modular form of weight 12. Since θ(f) is
always a cusp form (ie, it has no constant term), we see that θ(f) is equal to the reduction of
some cusp form. However, there the cusp forms of weight 12 are of dimension 1, generated
by ∆ and we have shown that θ(Ep−1 = λ∆ (mod 5). Comparing leading coefficients, we
see that λ = 1 and we have shown the congruence:

nσ5(n) ≡ τ(n) (mod 5).

where τ(n) is the Ramanujan tau function (the Fourier coefficients of ∆). Exactly along the
same lines, we can also show that:

nσ3(n) ≡ τ(n) (mod 7).

We will also find use for ω while studying p-adic modular forms. Also useful then will be
the following section on the smoothness of M as a curve over Fp.
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3.4. M as a smooth algebra: It is clear from the description ofM = Fp[Q,R]/(A(Q,R)−1)

that it is a planar curve. Since A(Q,R)− 1 is a prime ideal, this is an irreducible curve. In
fact, it is even smooth over Fp. (Note that this is equivalent to being regular or normal for
curves over a field).

The proof follows from general considerations of commutative algebra but will prove to
be quite useful in the theory of p-adic modular forms. Since A(Q,R) is homogeneous of
degree p − 1 (where degQ = 4, degR = 6), the following lemma is clearly sufficient to
show smoothness:

Lemma 6. Let S = k[x, y]/(f(x, y) − 1) be a one dimensional algebra over the field k. Suppose
that under the grading deg x = k, deg y = l, f(x, y) is homogeneous of degree d. Then S is smooth
over k.

Proof. Suppose not. Then there exist points α, β ∈ k such that f(α, β) = 1 and fx(α, β) =
fy(α, β) = 0. Here fx, fy stand for the partial derivatives of f with respect to x and y
respectively. (This follows from the Jacobian criterion for smoothness).

Consider the operator on k[x, y]:

∂(h(x, y)) = kxhx + yhy.

As a linear combination of derivations, it is a derivation on k[x, y]. Further, on homoge-
neous polynomials g(x, y) of degree d, it acts by ∂(g(x, y)) = dg(x, y). This can be verified
on monomials of the form xayb, ka + lb = d quite easily. Then, simply note that all homo-
geneous polynomials are sums of monomials of this form.

Since ∂ is a linear combination of fx, fy, we know that ∂(f)(α, β) = 0. However, by defi-
nition, ∂(f) = df and this contradicts our assumption that f(α, β) = 1 and completes the
proof.

�

4. MODULI THEORETIC INTERPRETATION OF Fp MODULAR FORMS.

Characteristic modular forms (over C for instance) have moduli theoretic interpretations in
terms of function on Elliptic curves. There is a corresponding interpretation for Fp modular
forms and in fact, we can provide a concrete interpretation of A(Q,R) as above. To begin
with, let us recall the classical moduli theoretic story:

4.1. Modular forms as functions on Elliptic Curves. :

Recall that modular forms over C are functions on the upper half plane satisfying certain
functorial and growth criterion. However, this definition does not generalize well.

Instead, we use that points of the upper half plane parametrize pairs (E,ω) up to isomor-
phism where E is an Elliptic curve over C and ω is a differential form on E. Explicitly, the
correspondence is as follows:

τ ∈ H←→ (C/(2πiZ + 2πiτZ), dz)

where z is the parameter on C. The 2πi is simply for cosmetic reasons. We can then define
modular forms as functions to C on pairs (E,ω) (up to isomorphism) as above subject to
certain conditions:

One can verify quite easily that if τ corresponds to E,ω, then (aτ +b)/(cτ +d) corresponds
toE,ω/cτ+d. Therefore, the functional equation of a modular forms of weight k translates
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to the following:

f(E, λω) = λ−kf(E,ω).

Similarly, we require also some conditions on the ”growth of f in families” corresponding
to holomorphicity. Since we will not need it, I will not define it here.

This interpretation of modular forms are called as Katz’ modular forms. Note that the
above definition of a modular form is truly independent of C and we will make the same
definition for any ring R. In particular, for R = Fp, modular forms are functions (to Fp) on
pairs (E,ω) of an elliptic curve over Fp and a differential form ω on it (up to isomorphism).

4.2. q - expansions of Katz’ modular forms: One might naturally wonder whether we can
interpret the Fourier series of modular forms in this setting. This is possible but is highly
technical and I will only provide a sketch of how to do it. A rigorous treatment involves
techniques from rigid geometry but we can go quite far taking a few things on faith.

A natural approach would be try and uniformize curves as one might do over C. However,
the standard set up does not generalize easily. Instead, we do the following:

First, let us treat the complex case. Usually, one uniformizes an elliptic curve Eτ/C by
means of a lattice Λ = (2πiZ + 2πiτZ) ⊂ C such that there is an analytic isomorphism
C/Λ −→ Eτ . However, we can also uniformize E by C× by exponentiating first.

We note that the exponential map induces an isomorphism C/2πiz −→ C×. Let z be the
co-ordinate on C and t = ez the coordinate on C×. Then we have an induced isomorphism
C×/qZ ∼= Eτ where q = e2πiτ . Also, we see that the differential dz maps to dt/t.

We can replicate this approach over any base in the following way. Suppose we want
to consider elliptic curves over a base field k (equivalently, modular forms with values
in k). Then, we define the tate curve to be an elliptic curve over k((q)) by the equation
y2 + xy = x3 + a4x+ a6 where

−a4 = 5
∑
n

n3qn

1− qn
= 5q + 45q2 + 140q3 + · · ·

and

−a6 =
∑
n

7n5 + 5n3

12
× qn

1− qn
= q + 23q2 + 154q3 + · · ·

are power series with integer coefficients. Similarly, one has an explicit description of the
differential.

One way to make sense of this is to note that over C, the uniformization gives us a Weier-
strass equation for Eτ with coefficients being modular forms. This definition is a slight
variant of that equation.

At any rate, this explicit description will not be so useful for us. However, one can define
the Tate curve to be Gm/q

Z in an appropriate geometric category (that of rigid analytic
objects). The differential is correspondingly dt/t.

One can show that evaluating a modular f on the tate curve along with the above dif-
ferential will give us the q-expansion of the modular form over k. This provides a very
geometric interpretation of modular forms over Fp.
We will not need much more than the above definitions to prove that modular formA(Q,R)

in M is to the Hasse invariant:
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4.3. The Hasse Invariant. Elliptic curves over a finite field Fp come in two flavours: ordi-
nary and supersingular. There are many ways of defining these terms but we will use the
following:

Let E/Fp be an elliptic curve and ω some non zero differential. Recall that there is a Frobe-
nius map F : E −→ E(p) of degree p. It is an isomorphism on the underlying topological
space and acts on the co-ordinate ring by raising to the p-th power. In other words, if a
local equation for E is

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

then the corresponding equation for E(p) is

y2 + ap1xy + ap3y = x3 + ap2x
2 + ap4x+ ap6

and the isogeny is given by (x, y −→ (xp, yp)). Similarly, if ω is given by dx/(2y+a1x+a3),
then ω(p) = dx/(2y + ap1x+ ap3).

However, we can also consider the dual isogeny F∨ : E(p) −→ E and pull back ω along this
map to get F∨∗(ω). Since the space of differential forms is one dimensional, there exists
some constant A(E,ω) ∈ Fp such that F∨∗(ω) = A(E,ω)ω(p).

A(E,ω) is known as the Hasse invariant and is zero precisely when E is supersingular.
This notation is no coincidence. A(E,ω) will turn out to be a modular form of weight p− 1

(with coefficients in Fp) and in fact, equal to our A(Q,R) = Ep−1 from before.

4.4. The Hasse Invariant is a modular form. I will only prove that it satisfies the func-
tional equation of a modular form. We need to compute A(E, λω). It is clear from the
local description of ω(p) that (λω)(p) = λp−1ω(p). Also, pullbacks commute with scalars
and therefore, we have:

F∨∗(λω) = A(E, λω)(λω)(p) =⇒ A(E, λω) = λp−1A(E,ω).

Therefore, A(E,ω) transfers as a modular form.

4.5. The q-expansion of the Hasse invariant. Since A(E,ω) is (the reduction of) a modu-
lar form of weight p − 1, to show that it is equal to Ep−1, we simply need to compute the
q-expansion and show it is equal to 1. This section will be very sketchy.

As discussed before, computing the q-expansion is equivalent to evaluation the modular
form on the Tate curve with the differential dt/t. We will do this by considering the rigid
analytic model ETate = Gm/q

Z of the Tate curve:

Since Gm is defined over Fp, the Frobenius leaves it invariant. Therefore, in computing
E

(p)
Tate, we only have to raise q to the p-th power. (Recall that q is an element of our base

Fp((q)) while t is the co-ordinate on it. The Frobenius changes the coefficients but leaves
the co-ordinates invariant).

That is, E(p)
Tate = Gm/q

pZ. For the same reason, ωp = dt/t. Further, one can verify that the
dual to the Frobenius is simply the natural quotient map F∨ : Gm/q

pZ −→ Gm/q
Z.

Therefore, F∨∗(ω) = dt/t and thus, A(ETate, dt/t) = 1 which completes the proof.

5. P-ADIC MODULAR FORMS

We can finally start talking about modular forms with p-adic coefficients. The goal here
is to find a subalgera Mp of Qp[[q]] that provides us with a reasonable notion of p-adic
modular forms.
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Certainly, classical modular forms with coefficients in S = Z(p) should be included in Mp.
Equally clearly, we would in fact like to also allow Qp linear combinations of these classical
modular forms. That is, we would like to have:

MS ⊗Z Qp ⊂Mp.

We would also like to exploit the analytic nature of Qp and allow (p-adic) limits of classical
modular forms in MS . That is, given a sequence

fm =
∑
n≥0

anq
n

of modular forms with coefficients amn ∈ S = Z(p), we would like to define a p-adic
modular form:

f = lim
m−→∞

fm =
∑
n≥1

anq
n

provided that the anm converge uniformly in n to an asm goes to infinity. The convergence
is of course in the p-adic topology. This almost works except for a complication arising due
to the weights of fn.

In fact, if we require that the weights kn of fn are constant, then we will not get anything
new outside MS⊗Qp. To get anything interesting, we are forced to let the weights kn vary.
We will see that this is in fact a feature and is responsible for the richness of the theory.

First, we would like to say that the weights converge p-adically provided that the series fn
converge uniformly (as above). As evidence for this, we have the following theorem that
follows immediately from the Von Staudt-Clausen and Kummer congruences of section
3.1.

Theorem 7. The Eisenstein series Ek satisfy the following congruence:

Ek ≡ 1 (mod pr) ⇐⇒ (p− 1)pr−1|k for p ≥ 3

and
Ek ≡ 1 (mod pr) ⇐⇒ pr−2|k for p = 2.

Note that the congruence is between modular forms of weights (p − 1)pr−1 and 0 and so
the weights are p-adically close. This is not an isolated incidence as the following theorem
shows. The p-adic valuation vp is normalized so that vp(p) = 1.

Theorem 8. Suppose that
f =

∑
n≥0

anq
n and f ′ =

∑
n≥0

a′nq
n

are two classical modular forms in MS of weights k and k′. That is, an, a′n ∈ S = Z(p). If f, f ′ are
p-adically close, that is:

vp(f − f ′) ≥ vp(f) + r for r ≥ 1

then the weights are p-adically close:

k ≡ k′ (mod (p− 1)pr−1) if p ≥ 3

and
k ≡ k′ (mod pr−2) if p = 2.

Proof. By dividing f by the highest power of p that divides it, we can assume that vp(f) = 0
and that f ≡ f ′ (mod pr).

Note that, since f, f ′ are p-adically close, their reductions inM are equal. We thus see from
section 3.2 that k ≡ k′ (mod p−1). We now need to show that k and k′ are p-adically close.
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We can make the following reductions without loss of generality. Assume that k′ ≥ k. In
fact, letting h = k′ − k, we can assume that h ≥ 4 by replacing f ′ by f ′E(p−1)ps for s large
enough. This follows from Theorem 7 on Eisenstein series.

For ease of notation, let λ = r− 1 if p ≥ 3 or λ = r− 2 if p = 2. Thus, we need to show that
l = vp(h) ≥ λ. Assume otherwise for contradiction, that is, l < λ for the remainder of this
proof.

Note that fEh and f ′ are modular forms of the same weight k′. Therefore, g = f ′ − fEh is
a modular form of weight k′ and we see that:

f(1− Eh) ≡ g (mod pr).

By theorem 7, 1−Eh is divisible by pλ and hence by pl+1. Similarly, g ≡ 0 (mod pl+1) since
Eh ≡ 1 (mod pλ).

By theorem 7:
1− Eh
pl

= cφ = c
∑
n≥1

σh(n)qn.

where p - c. Similarly, g′ = g/pl is a modular form mod p of weight k′ (mod p− 1) and f is
a non-zero modular form mod p of weight k ≡ k′ (mod p− 1).

Therefore, dividing the above congruence by pl, we get the following congruence:

φ ≡ g′

cf
(mod p)

where g′/f is also a mod p modular form of degree 0 (mod p − 1). It is not clear whether
φ is a modular form mod p, however, the above congruences shows us that it is indeed a
modular form mod p of degree 0 (mod p− 1).

However, this is sufficient to produce a contradiction as follows:

ψ = φ− φp =
∑
n≥1
p-n

σh−1(n)qn =
1

24
θh−1(E2) ≡

1

24
θp−2(Ep+1) (mod p).

Hence, θ satisfies an algebraic equation overM . To conclude the proof, let us compute ω of
both sides. This function was defined in section 3.3. From Theorem 5 in that section, recall
that:

ω(θp−2(Ep+1)) = ω(Ep+1)) + (p− 2)(p+ 1) = p2 − 1.

On the other hand, ω(φp) = pω(φ) and this dominates ω(φ). Therefore, p|ω(φ − φp) while
p - p−1 which gives rise to the required contradiction.

�

The above theorem suggests the following definitions:

Define Xm to be:

Xm =

{
Z/(p− 1)Z× Z/pm−1Z p ≥ 3

Z/2m−2Z p = 2

and X = lim←−Xm.

We define p-adic modular forms to be formal series in Qp[[q]], f =
∑

n≥0 anq
n such that

f = lim fi where the fi are classical modular forms with rational coefficients.

Further, by the above theorem, the weights ki of fi converge to some element k in X that
we call the weight of f . This weight is clearly independent of the sequence we choose.
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Since classical forms are all of even weight, the same is true for p-adic modular forms. That
is, the weight of a p-adic modular form is in 2X or equivalently, (−1)k = 1 for k the weight
of a p-adic modular form. We will define an Eisenstein series for each of these weights in
the following way.

6. P-ADIC EISENSTEIN SERIES

Let k ∈ 2X . Pick a sequence of even integers km such that km −→ k in X and km −→∞ in
the Euclidean topology. Then, define the p-adic Eisenstein series E∗k by:

G∗k = lim
m−→∞

Gkm = lim
m−→∞

−B2km

2km
+

∑
n≥1

σ∗k−1(n)qn

where σ∗k−1(n) = limm−→∞ σkm−1(n). For p - n, this is well defined since nx is p-adically
continuous in x. On the other hand, for p|n, this is 0 since km −→ ∞. Clearly, σ∗k−1 is
independent of the sequence km we choose.

However, it is still not clear that the constant term converges or that it is independent of our
choice. We are in the position of having good control over non constant terms but having
no control at all over the constant term. This is precisely what the next few theorems give
us:

First, we can restate theorem 8 in the following way:

Theorem 9. Suppose f, f ′ are non zero (p-adic) modular forms of weights k, k′. If:

vp(f − f ′) ≥ vp(f) +m

then k, k′ have the same image in Xm.

Let g =
∑

n≥0 anq
n be a p-adic modular of non-zero weight k ∈ X . Applying the contra-

positive of the above to f = a0, f
′ = g, we obtain:

Corollary 10. Suppose k 6= 0 in Xm+1. Then:

inf
n≥1

vp(an) = vp(f − f ′) < vp(f) +m+ 1 ≤ vp(a0) +m.

That is:
vp(a0) +m ≥ inf

n≥1
vp(an)

This let’s us control the constant term as required.

Theorem 11. Suppose that fm =
∑

n≥0 amnq
n is a sequence of p-adic modular forms such that:

• The sequence in m amn tends to an uniformly (in n).
• The weights km of fm converge to k 6= 0 in X .

Then, am0 has a unique limit a0 and therefore f =
∑

n≥0 an is a p-adic modular form.

Proof. Since the amn tend uniformly to am, for any t ≥ 0, we can find a M such that
vp(amn) ≥ t for m ≥ M . Also, since k 6= 0, the kn are all non zero in some Xl+1 (drop-
ping some initial terms if necessary). However, then the previous theorem tells us that
vp(am0) ≥ t − l for m ≥ M . Thus, the am0 lie in a compact subset of X and we can find a
limit point a0.

Picking a subsequence so that a0 is an actual limit point, we see that f is a p-adic modular
form. Further, if a′o, f ′ give rise to a different limit, then f − f ′ = a0− a′0 is a modular form
of weight both 0 and k 6= 0. This is a contradiction unless it is 0. �
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Applying this theorem to Eisenstein series shows us that G∗k is well defined. Define ζ∗(k)
by:

G∗k =
1

2
ζ∗(1− k) +

∑
n≥1

σ∗k−1(n)qn.

It is defined for all even k and is a continuous function on the odd elements of X and in
fact, this is the Kubota-Leopoldt p-adic zeta function. More precisely:

Theorem 12. For p 6= 2, let 1 6= k = (s, u) be an odd element of X = Zp × Z/(p− 1)Z. Then:

ζ∗(s, u) = Lp(s, ω
1−u),

where Lp is the Kubota-Leopoldt zeta function and ω the Teichmuller character.

Proof. Define ζ ′(s, u), a function on X , by:

ζ ′(s, u) = Lp(s, ω
1−u).

For an integer k = (s, u) in X , by the very definition of Lp, one has:

ζ ′(1− k) = (1− pk−1)ζ(1− k).

If k ∈ 2X and non zero with a sequence of integers ki −→ k, then:

ζ ′(1− k) = lim
i−→∞

(1− pki−1)ζ(1− ki)

and moreover, if ki −→∞ in the usual topology, then:

ζ ′(1− k) = lim
i−→∞

ζ(1− ki) = ζ∗(1− k).

Thus, we have shown that ζ ′ = ζ∗. as the theorem required.

�

The p-adic Eisenstein series also satisfy the same congruences that the usual Eisenstein
series did. In particular, if we let E∗k = 2G∗k/ζ

∗(1− k), then the following is true:

k = 0 ∈ Xm+1 =⇒ E∗k ≡ 1 (mod pm).

This is a straightforward consequence of the usual congruences for Eisenstein series (The-
orem 7).
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