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1. DISTINGUISHED POLYNOMIALS

Let Λ = Zp[[t]]. This is a two dimensional local ring. We say that a polynomial is distin-
guished if it is of the form p(t) ≡ tn (mod p). These will be our building blocks.

Theorem 1 (Weierstrass Preparation Theorem). Any power series f(t) ∈ Λ can be factored
uniquely into the form pnP (t)U(t) where P (t) is distinguished and U(t) is a unit.

The proof requires a version of the Euclidean Divison algorithm”

Theorem 2 (Division Algorithm). Let f(t) ∈ Λ be such that f(t) ≡ Tn + higher order terms
(mod p). Then, for any g(t) ∈ Λ, we can find q(t), r(t) uniquely such that:

g(t) = q(t)f(t) + r(t)

where r(t) is a polynomial of degree less than n.

It is easy to prove uniqueness but I don’t understand how to prove existence. I will assume
this theorem for now.

We can use this to prove the preparation theorem:

Proof. Assume that p - f(t) and that it is of the form assumed in the division algorithm.
Other notation also carries over from that statement.

Take g(t) = tn and so we have tn − r(t) = q(t)f(t). Reducing modulo p one sees that
tn − r(t) is distinguished. Expanding and comparing coefficients, one sees that q(t) is
invertible modulo p and hence in Zp (by Hensel).

This completes the proof. �

This result is very useful for a lot of reasons. For one, it lets us classify the spectrum of Λ:
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Theorem 3. The prime ideals of Λ are of the following form: (P (t)), for P a distinguished irre-
ducible polynomial or (p) or (p, T ). The last one is the unique maximal ideal.

Proof. Let p be a prime ideal and f(t) ∈ p. Then continuing the notation, either p ∈ p or
P (t) ∈ p for some P (t) distinguished polynomial dividing f . If p ∈ p, everything follows
easily.

Assume p 6∈ p. ... �

Also, it is clear from the factorization that any power series has finitely many roots (since
Λ is an integral domain and units can’t have roots).

This lets us prove the following result:

Theorem 4. For P (t) a distinguished polynomial, P (t) divides a power series f(t) as a power
series if and only if it divides it as a polynomial.

Proof. A root λ of P (t) has to have absolute value less than 1 (extend Zp if necessary to
include all roots in the base ring). Therefore a root of P (t) is a root of f(t) and use this to
factor x− λ out of both P (t) and f(t). �

All of this has been building up to the following big theorem:

Theorem 5. Let G = Zp. We have an isomorphism:

Zp[[G]] = lim←−Zp[G/H] ∼= Λ

where the inverse limit is over open subgroups ofGwhich sends the topological generator γ to T+1.

Proof. We need to show that lim←−Zp[[Z/pn]] ∼= Zp[[t]]. Note that

Rn = Zp[[Z/pn]] = Zp[t]/((1 + t)p
n − 1).

Define Pn(t) = (1 + t)p
n − 1. Note that this is a distinguished polynomial. The division

algorithm (with f(t) = Pn(t)) gives us a map Λ −→ Rn that sends g(t) −→ gn(t) = r(t).

We need to verify that gn+1(t) ≡ gn(t) (mod P )n(t) to show that we can glue the maps
together. This follows from the fact that Pn+1(t)/Pn(t) is a polynomial and Theorem 4.

Then we need to show that it is injective and surjective.

Injectivity follows from the fact that Pn(t) ∈ (p, t)n (prove by induction) and so f(t) ∈⋂
n Pn(t) implies that it is 0

To show that it is surjective, we use the fact that Λ is complete and take the limit of the
sequence.

To verify this choice, let f = lim fn and note that for m ≥ n, fm − fn = Pnqm,n and
after rearranging and letting m −→ ∞, one sees that limm−→∞ qm,n ∈ Λ and so f =
Pn(limm−→∞ fm,n) + fn.

�

2. STRUCTURE THEOREM FOR Λ -MODULES:

For M a finitely generated Λ module, there is an exact sequence of Λ-modules the form:

0 −→ A −→M −→ Λr ⊕i Λ/(fi(t)
mi)⊕j Λ/(pnj ) −→ B −→ 0)

where A,B are finite and fi are distinguished and irreducible.
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3. GROWTH OF CLASS GROUPS IN A Zp EXTENSION

Let K0 = K be a number field and K∞/K be a Galois extension such that it has Galois
group Γ = Zp. This is equivalent to requiring that there is a sequence of number fields Kn

such that each of them has Galois group Z/pn over K.

The ur-example is obtained in the following manner: LetMn = Q(µn). Then Gal(M∞/M) =
Z×p and therefore there is a unique sub extension K∞ of M∞ with Galois group Zp as re-
quired.

This also gives us a way to generate Zp extensions for any number field in a similar way
by adjoining roots of unity and taking subfields.

We are interested in Xn = Cl(Kn)[p]. This is naturally a module over Γn = Gal(Kn/K) =
Z/pn and a module over Zp (since we are taking the p-part). It makes sense to look at it as
a module over the group ring Rn = Zp[Z/pn].

Iwasawa’s great idea was to see that it would be easier to study the modules if we consid-
ered all of them at the same time by forming the inverse limit.

We will also make use of the fact that there is a unique abelian unramified extension Ln of
Kn such that Xn = Gal(Ln/Kn) through the Frobenius map. Putting every thing together,
consider the following set up:

We have the extension of fields L/K∞/K such that L =
⋃
Ln. Let X = Gal(L/K∞) and

G = Gal(L/K) so that X is a subgroup of G and Γ is a quotient of G.

Since Γn acts on Xn (for γ ∈ Γn, lift it to γ̃ ∈ Gal(Ln/K) and define the action by γ ◦ x =
γ̃xγ̃−1) in a way compatible with the restriction maps, we have an action of Γ on X . As
before, X is also a Zp module and so X is a L module.

Now if we could show that X is finitely generated and find some way to relate X to Xn,
we could leverage the structure theorem to prove things about the growth of the size of
Xn.

First, we need to study the ramification in a Zp extension:

3.1. Ramification:

Theorem 6. A Zp extension can be ramified only at places above p.

Proof. Let I be an inertia group. Since I is closed, it has to be of the form pnZp. Since the
inertia group at an infinite prime can only be finite, this rules out the archimedean case.

In the non archimedean case, if I corresponds to the inertia group of a prime over l 6= p,
note that by local class field theory, I is a pro-l group. However pnZp ∼= Zp is pro-p and
this is a contradiction. �

Corollary 7. There are only finitely many primes ramified in K∞/K.

Corollary 8. There is a finite extension Ke such that K∞/Ke is totally ramified at every prime
that ramifies.

Proof. The intersection of all the inertia groups has finite index. �

Returning to the set up described at the beginning, let us make the assumption that K∞
is totally ramified over K. Then, the restriction of the natural map G −→ Γ to any inertia
group is injective and surjective.
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In particular, if I1, . . . In are the inertia groups, thenG = IkX = XIk. Therefore, in defining
the action of Γ on X , we might as well think of it as an action of Ik on X . Let σk be a
topological generator of Ik that maps to T + 1.

Then, since Ik ⊂ XI1, we have σk = akσ1 for ak ∈ X .

3.2. Relating X to Xn: Let us first make the assumption that K∞/K is totally ramified
whenever it is ramified.

Let us first focus on X0. This is the maximal abelian unramified sub extension of G and so:

X0 = G/〈[G,G], I1, . . . , In〉.

Let us work towards simplifying this. First, I claim that [G,G] = TX = Xγ0−1.

Proof. Let f = αx, g = βy ∈ G be arbitrary elements with α, β ∈ I1 and x, y ∈ X . Then:

[f, g] = αxβyx−1α−1y−1β−1

= xααβyx−1α−1β−1βy−1β−1

= xα(yx−1)αβy−β

= xα(1−β)yβ(α−1)

Taking α = γ, β = 1, we see that TX ⊂ [G,G]. In the other direction, for arbitrary α ∈ Ik ∼=
Zp, note that we can write α = γc for c ∈ Zp. Then:

α− 1 = (1 + t)c − 1 ∈ tΛ.

Similarly for β and so [G,G] ⊂ TX . �

Also, recall that Ik = akI1 and G = I1X . Therefore:

X0 = X/〈a2 . . . , an, TX〉

Define Y0 = 〈a2 . . . , an, TX〉. This is a Zp module (since we are taking the closure) and
also, T takes it to itself. Therefore, it is a Λ module.

Now let us try and see how to get Xn. The idea is that we will think of Kn as our new K0

and see what changes. X remains unchanged. Γ gets replaced by the subgroup pnZp ∼= Γ
and γ gets replaced by γn.

Similarly, Ik gets replaced by pnIk and σk becomes σp
n

k . Therefore, since:

σmk = (akσ1)
m = a

1+σ1+...σ
m−1
1

k σm1

we know that ak gets replaced by vnak where vn = 1 + γ + γ2 . . . γp
n−1 = (1+t)p

n−1
t ∈ Γ.

Finally, TX gets replaced by ((1 + T )p
n − 1)X = vnTX . We see that effectively, we replace

Y0 by vnY0.

That is, we have proven the following:

Theorem 9. Let vn and Y0 be as above. Define Yn = vnY0 Then, Xn = X/Yn.
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3.3. Proving Finite Generation: We will maintain our assumption for this section, see the
next section to remove it.

We will need a lemma to get off the ground:

Note that X is compact since it is a profinite group.

Lemma 10. If M is a compact Λ module, then M is finitely generated if and only if M/(p, T )M
is finite.

Proof. One direction is clear. To show that M is finitely generated, let N be a finitely gen-
erated submodule of M such that N/mN = M/mM . We want to show that P = M/N = 0.
We know that P/mP = 0.

We will prove it by showing that P ⊂ mP . Since
⋂
nm

n = 0, this is sufficient.

The idea here is the following: For any open set U of 0 and any point z ∈ P , note that we
can find some n such that mnUz ⊂ U for some Uz since mn −→ 0.

Since P is compact, we can use finitely many of these Uz to cover P and we have shown
that P = mnP ⊂ U . This completes the proof.

�

REMARK: This shows that M is Noetherian if it is finitely generated. In particular, Λ is
finitely generated. This can also be seen directly by the Hilbert Basis Theorem since the
generators of ideals are polynomials (by the preparation theorem).

Therefore, to show that X is compact, it suffices to show that X/mX is finite. However,
note that v1 ∈ m and so X/mX is a quotient of X/v1Y0 = X1 which is finite.

This proves that X is finitely generated.

3.4. Removing the assumption. Finite generation is clear since passing to Ke means we
are working with a smaller ring.

What we really need to change are the vn. Note that passing to Ke replaces γ by γe. For
n ≥ e, it is easy to see that we need to replace vn by:

vn,e = 1 + γp
e

+ γ2p
e

+ · · ·+ γ(p
n−e−1)pe =

vn
ve
.

We have everything in place finally and we can begin calculating the class groups.

3.5. Calculating the size of Xn: Since X is finitely generated, we can apply the structure
module. For the moment, let us assume that A = B = 0.

So X = Λr ⊕i Λ/(fi(t)
mi) ⊕j Λ/(pnj ). We will calculate each quotient separately for each

direct factor M :

Recall that vn,e is a distinguished polynomial since the quotient of distinguished polyno-
mials is always distinguished (if it is a polynomial).

M = Λ. In this case, M/(vn,e)M is infinite but X/vn,eX is finite, being a quotient of Xn.
Therefore, this cannot occur and r = 0.

M = Λ/(pnj ). In this case, M/(vn,e)M = Λ/(pnj , vn,e) = Z/pn[t]/(vn,e). Since vn,e has
degree pn − pe, this set has (pnj(p

n−pe)) elements.

M = Λ/(fi(t)
mj ). This is the hardest case by far. First note that the quotient is infinite

unless (fi(t), vn,e) = 1. We will prove the result the induction on n.
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Let g(t) = fi(t)
mj . This is a distinguished polynomial and let it have degree d. Let V =

Λ/(g). We want to figure out the size of V/vn,eV . Let this value be kn.

Note that kn+1/kn = |vn,eV/vn+1,eV |.
Now, we see that vn+1,e/vn,e = vn+1/vn = Pn+1/Pn where Pn = (1 + t)p

n − 1 is distin-
guished.

We then see that:

Pn+1(t) = (1 + (1 + t)p
n

+ (1 + t)2p
n · · ·+ (1 + t)(p−1)p

n
)Pn(t).

Putting everything together, we see that |E| = pmp
n+ln+c for m, l, c constants and n large

enough. E is the module approximating Xn.

Let |Xn| = en. So far we can only conclude that en = mpn + ln + cn where cn is bounded.
The next lemma fixes this problem:

Lemma 11. Suppose Y andE are Λ modules with Y ∼ E such that Y/vn,eY is finite for all n ≥ e.
Then, for some constant c and large enough n, we have |Y/vn,eY | = pc|E/vn,eE|.

Proof. �
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