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CHAPTER 1

NUMBER FIELDS AND ALGEBRAIC INTEGERS

1.1. Algebraic integers
All the rings in this section are supposed to be commutative.

Definition 1.1.1. — Let A C B be an extension of rings. We say an element x € B is
integral over A if there exists a monic polynomial f(T) = T" + a;T" ' + -+ + a, € A[T]
such that f(z) = 0. We say B is integral over A, if every x € B is integral over A.

Exzample 1.1.2. — (1) Z][i] is integral over Z.
(2) Let L/K be an extension of fields. Then L is integral over K if and only if L/K is
an algebraic extension.

Proposition 1.1.3. — Let A C B be an extension of rings, * € B. Then the following
statements are equivalent:

1. x is integral over A.
2. the subring Alx] C B is a finite generated A-module.
3. x belongs to a subring B’ C B such that B is finitely generated as an A-module.

Proof. — (1) = (2) = (3) is trivial. We prove now (3) = (1). Choose generators
aig,- -+ ,ap of the A-module B’. Since B’ C B, there exists a U € M, x,,(A) such that
(g, an) = (ag, - ,an)U <= (a1, - ,ap)(xl, —U) = 0.
Let V be the cofactor matrix of xI,, — U. Then one has
(a1, yap)(xl, —U)V = (a1, ,ap) det(zl, — U) = 0.

As 1 € B'is a linear combination of o;’s, we get det(zI, —U) = 2" +a12" 1+ -+a, = 0.
O

Corollary 1.1.4. — Let A C B be extensions of rings. Then the elements of B which
are integral over A form a subring of B.

Proof. — Given z,y € B integral over A, we need to show that x + y and xy are also
integral over A. Actually, one sees easily that A[z,y] is a finitely generated A-module,
and concludes using Proposition 1.1.3(3). O
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Corollary 1.1.5. — Let A C B C C be extensions of rings. Then C is integral over A
if and only if C is integral over B and B is integral over A.

Proof. — The “only if” part is easy. Prove now that the inverse implication holds. Let
x € C. Since C is assumed integral over B, we have f(z) = 2" + bjz" 1 4+ -+ b, =0
for some b1,--- ,b, € B. Note that by, --- b, are all integral over A by assumption.

One proves easily by induction that A[by,--- ,b;] is a finitely generated A-module for all
1 <i<mn. Then Afby,--- ,by, ] is a quotient of A[by,--- ,b,][T]/(f(T)), hence it is also
finitely generated as A-module. One concludes with Proposition 1.1.3(3). O

Definition 1.1.6. — (1) Let A C R be an extension of rings. Define the integral closure
of A in R to be the subring of R consisting of all integral elements over A.

(2) If the integral closure of A in R is A, we say A is integrally closed in R.

(3) Assume A is an integral domain. We say A is integrally closed if A is integrally
closed in its fraction field.

Example 1.1.7. — (1) Z is integrally closed. Indeed, let z = ¢ € Q with ged(a,b) =1
and b > 0. If x is integral over Z, then there exist some c1,--- , ¢, € Z such that

2" e M ey =0=a" +c1a" b+ b =0.

If b # 1, let p denote a prime dividing b. Then the equality above implies that p|a™, hence
pla. This contradicts with ged(a, b) = 1.

(2) Let w = e". Then Z|w] is integral over Z and integrally closed by similarly
arguments as above. Actually, every principal ideal domain is integrally closed.

Definition 1.1.8. — (1) An element € C is an algebraic number (resp. an algebraic
integer) if x is integral over Q (resp. over Z).

(2) A number field is a finite extension of Q. For a number field K/Q, we define Ok to
be the integral closure of Z in K, and call it the ring of integers of K.

Example 1.1.9. — The ring of Gauss integers Z[i| is the ring of integers of Q(7), and
Zlw] with w = —1 + @ is the ring of integers of Q(v/—3).

Proposition 1.1.10. — Let x € C be an algebraic number, and f(T) = T" + ayT" ' +

<o+ an € Q[T be its minimal polynomial. Then x in an algebraic integer if and only if
f(T) € zZ[T).

Proof. — One side implication is clear. Assume now that x is an algebraic integer. Let
{z = z1, -+ ,z,} be the set of complex roots of f(7T). We claim that each z; is also an
algebraic integer. Indeed, for each x;, there exists an embedding of fields ¢ : K = Q(z) —
C such that ¢(z) = x;. Therefore, if x satisfies g(x) = 0 for some monic polynomial
g(T) € Z[T1], then g(z;) = t(g(z)) = 0. This proves the claim. But each a; is a symmetric
function of x;’s. It follows that a; € Ox NQ = Z. O
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Example 1.1.11. — Let K = Q(v/D) with an integer D # 1 square free. Then we have
Ok = 7Z + Zwp, where

o MR D=1 mod4

PTYVD iD=23 mod 4.

It is easy to check that wp is an integer. It remains to show that if z = a + byv/D with
a,b# 0 € Q is an integer, then x € Z + Zwp. Indeed, the minimal polynomial of z over
Qis T? — 2aT + (a® — b>D) = 0. By the previous Proposition, for x to be an integer, one
must have 2a,a> —b>D € Z. If a € Z, then b must be in Z. Otherwise, if a is a half-integer,
then b has to be an half-integer as well and D =1 mod 4.

1.2. Traces and norms

Definition 1.2.1. — Let L/K be a finite extension of fields, and x € L. We view L as
a finite dimensional K-vector space, and denote by

¢r: L — L

the K-linear endomorphism on L defined by the multiplication by x. We have ¢, €
Endg(L). We put Trp g () = Tr(¢z), and call it the trace of x (relative to L/K); put
Nz i (x) = det(¢z), and call it the norm of x (relative to L/K ).

Lemma 1.2.2. — Let L/K be a finite extension of fields, and x € L.
1. One has
Try g (v) = [L: K(7)|Trgp)x(x) and Npg(z) = NK(I)/K(x)[L:K(x)].
2. If f(T) =T"+ a1 T ' +---a, € K[T)] is the minimal polynomial of x over K, then
Trg @)/ (2) = —a1 and Ng(2y k() = (—1)"ay.
Proof. — Exercise. =

Proposition 1.2.3. — Let L/K be a finite separable extension of fields, and n = [L : K].
Fiz an algebraically closed field 2 and an embedding T : K — Q. Then

1. there exists exactly n distinct embeddings o1, - ,0p : L < Q such that o;|x = T for
1 <1< n;
2. the n embeddings o1, - - , 0, are linearly independent over 2.
Proof. — (1) By induction on n, one reduces to the case where L = K(z) for some z € L.

In this case, let f(T) = T" + a;T"! + ---a, be the minimal polynomial of z over K
so that L = K[T|/(f(T)). Put f(T) = T" + 7(a))T" * + -+ + 7(a,) € Q[T], and let
ai, -+, an € Q be the roots of f7(T'). Then the «;’s must be distinct (because f(T') is
separable). For each «;, there exists a unique embedding o; : L —  extending 7 such
that o;(z) = «;. Conversely, if o : L < Q is an extension of 7, then it must send z to
some «;, hence it must coincide with one of the o;’s.

(2) The statement is trivial if n = 1. Suppose now n > 2 and in contrary that o1, -- , 05,
are linearly independent over ). Up to renumbering, we may assume that Z?Zl cio; =0
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is a linearly relation with ¢; € Q* such that d > 2 is minimal. Thus for any = € L, we
have Zle ¢ioi(r) = 0. By dividing ¢1, we may assume that ¢; = 1. Choose y € L such
that o9(y) # o1(y). This is possible since o1 and o9 are distinct. Then Zf-l:l cioi(zy) =
Zle cioi(y)oi(x) = 0 for all © € L. Therefore, one obtains

d
Zci(ai(y) —o1(y))oi(z) =0, Vzxe L.
i=2

This is a non-zero linear relation among o;’s of length at most d — 1, whose existence
contradicts with the minimality of d. O

Theorem 1.2.4. — Let L/K be a finite separable extension of fields, T and o; for 1 <
1 < n be the embeddings as in Proposition 1.2.3. We identify K with its image in € via
7. Then one has

n

Trpx(z) = Zai(:p) and NL/K(x) = HU@'(:U), for all x € L.
i=1 i=1

Moreover, the K-bilinear form L x L — K given by
(z,y) = Trp g (zy) forallw,y €L

is non-degenerate, i.e. if v € L such that Trp g (zy) = 0 for all y € L, then x = 0.

Proof. — By the construction of o;’s in Proposition 1.2.3, Try /i (z) and Ny /i () are easily
verified if L = K(z). The general case follows from Lemma 1.2.2(1). The non-degeneracy
of the K-bilinear form Tr,/x (zy) follows immediately from Proposition 1.2.3(2). O

Remark 1.2.5. — If L/K is inseparable, then the pairing Try,x is no longer non-

degenerate. For instance, if K = Fy(z) and L = F,(x'/P), then Trp/k(z) = 0 for all
x € L.

Corollary 1.2.6. — Let L/K be a separable extension of degree n, and oy, -+ o € L.
Then (o, -+ ,an) is a K-basis of L if and only if det(Try x(ciaj)) # 0.

Proof. — Consider the morphisms:
K" 2 LY Kn

given respectively by ¢ : (z;)1<i<n = Y _; i and ¢ @ @ — (Trp /g (va;))1<i<n. Then the
matrix of 1) o¢ under the natural basis of K™ is (TrL/K(aiaj))lgmgn. If (o) 1<i<n is a basis
of L, then ¢ is an isomorphism by definition, and 1) is injective (hence bijective) by the non-
degeneracy of Try /i (wy). It follows that 10 is an isomorphism, thus det(Try/x (a;r)) #
0. Conversely, if det(Try/x(a;j)) # 0, then o ¢ is an isomorphism. It follows that ¢ is
injective, hence bijective since L has the same K-dimension as K". O
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Given a basis (o;)1<i<n of L over K. Let C' = (c¢;j)1<i,j<n denote the inverse matrix of
(TrL/K(aiozj))lgi,an, and put o = >} agc; for 1 < i < n. Then one checks easily
that

1 ifi=j
TrL/K(aia}/) = {

0 otherwise.

We call (o )1<i<n the dual basis of (ai)1<i<n with respect to Trp k. For any z € L, if
we write x = ), x;q;, then x; = Trp) g (ray); similarly if we write z = >, y;a;, then
yi = Trp g (zay).

1.3. Discriminants and integral basis

We apply the theory of previous section to the case of number fields. In this section,
let K denote a number field of degree n = [K : Q], and O be its ring of integers. For
ay, -, ap € K, we put

Disc(a, - -+, o) = det(Trg g(asay)),

and call it the discriminant of aq,--- , ay.

Lemma 1.3.1. — (1) The elements o, - , oy, form a basis of K over Q if and only if
Disc(aq, -+ ,ap) # 0.

(2) If o1, -0y denote the n distinct complex embeddings of K given by Proposi-
tion 1.2.3, then

Disc(ag, -+ ,ay) = det(a;(ay))?.
(3) If C € Myxn(Q) and (B1,--+ ,Bn) = (a1, -+ ,an)C, then
Disc(B1, - - - , Bn) = Disc(ay, - -+, o) det(C)2.

Proof. — Statement (1) is Corollary 1.2.6. For (2), one deduces from Theorem 1.2.4 that
n
Trcg(eicg) = > or(eiag) = > orlei)or(ay).
k=1 k

Hence, if A denotes the matrix (Trg/g(qiay))1<ij<n and U = (oi(a;))1<ij<n, then A =
UT-U. Statement (2) follows immediately. Let B denote (Trg q(8i3;))1<ij<n- Then one
has B = CT - A-C, and hence (3) follows. O

Proposition 1.3.2. — Let « be an arbitrary element of K, and f(T) € Q[T] be its
minimal polynomial. Then one has

n—l) — {O (n-1) Zf deg(f) < n,
(-1)77F Ngjo(f() if deg(f) =n.

Disc(1,a, -+ , &
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Proof. — Since (1,a,--- ,a"!) form a basis of K if and only if deg(f) = n, the first case
follows from Lemma 1.3.1(1). Assume now deg(f) = n. Denote by o1, - , 0, the complex
embeddings of K. By Lemma 1.3.1(2), one has

Disc(l, -+, o) = det(oi (@@ 1<ij<n)? = [[(0i(a) — 05(e))?,
1<J
where the last equality uses Vandermonde’s determinant formula. The Proposition then
follows from

Niso(f'(@) =[] o(f' (@) = [[TI(ei(@) - oj(a)).
i=1 i=1 j#i
O
Theorem 1.3.3. — The ring of integers O is a free abelian group of rank n.

Proof. — Choose a basis (a;)1<i<pn of K over Q. Up to multiplying by an integer, we may
assume that o; € Ok . Consider the abelian subgroup M C Ok generated by the a;’s. Let
(o )1<i<n be the dual basis of (a;)1<i<n With respect to Try /g, and put MY =37 | Zay
as a abelian subgroup of K. It is easy to see that

MY ={z € K|Trgg(zy) € Z, Vye M}.

Thus M C Oxg C MY, and one checks easily that MY /M is finite with cardinality
|Disc(a, - -+ ,ap)|. Since MY is a Z-module free of rank m, the Theorem follows im-
mediately. O

Definition 1.3.4. — A basis (a1, ,ay,) of K over Q is called an integral basis if it is
a basis of Ok over Z.

Proposition 1.3.5. — Let (a1, , ) be an integral basis of K, and (1, , Bn) be an
arbitrary n-tuple of elements in O which form a basis of K/Q. Then Disc(B1,- -+, Bn)
equals to Disc(aq, -+, ap) times a square integer. In particular, if (B1,- -, Bn) s also an
integral basis, if and only if Disc(fB1,- - , Bn) = Disc(aq, -, an).

Proof. — Write each (8; as a Z-linear combination of «;’s, then there exists a matrix
C € Myxn(Z) with det(C) # 0 and (B1,- -, Bn) = (a1, ,an)-C. Note that det(C) € Z,
then the Proposition follows from Lemma 1.3.1. ]

Definition 1.3.6. — The discriminant of K, denoted by Ag € Z, is the discriminant of
an integral basis of K.

By the previous Lemma, this definition does not depend on the choice of the integral
basis. For instance, if K = Q(v/D) where D # 0,1 is a square free integer, then (1,wp)
considered in Example 1.1.11 is an integral basis of K. Thus Ag = Disc(1,wp) which
equals to 4D if D = 2,3 mod 4, and to D if D =1 mod 4.

We now give a practical criterion for n-elements of O to be an integral basis.
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Lemma 1.3.7. — Let By,---,Bn be n elements of O which form a basis of K. Then
(81, ,Bn) is not an integral basis if and only if there exists a rational prime p with
p?|Disc(B1, -+, Bn) and some x; € {0,1,--- ,p— 1} for 1 < i < n such that not all of x;
are zero and Y, x;if; € pOk.

Proof. — Choose an integral basis (a1, -+, ay) and write (81, ,fn) = (a1, -+ ,ap) - C
for some matrix C' € M,,»,,(Z) with det(C) # 0. Then (51,---,5,) is an integral basis
if and only if det(C) = +1. Assume (f1,---,[3,) is not an integral basis. Let p be
a prime dividing det(C). Then p?|Disc(B1,---,8n) = det(C)?Ag. Denote by C the
reduction of C' modulo p. Let (Zy,---,Z,)" € [, be a non-zero column vector such
that C(Z1,---,Zn)" = 0. If x; denotes the unique lift of #; in {0,1,---,p — 1}, then
we see that ) . x;06; € pOg. Conversely, if such a nonzero ), z;8; € pOg exists, then
0 # (Z1, ,%,) € Ker(C). Hence, det(C) is divisible by p, and (81,--- ,3,) is not an
integral basis.

]

Proposition 1.3.8. — Let o € Ok such that K = Q(«), and f(T) € Z[T) be its minimal
polynomial. Assume that for each prime p with p?|Disc(1,a,---,a" 1), there exists an
integer i (which may depend on p) such that f(T + i) is an Fisenstein polynomial for p.
Then Ok = Zla].

Here, recall that a polynomial f(T) = T" + a;T" ! + --- + a, is called an Eisenstein
polynomial for p if pla; for all 1 <i < n and p?{ a,.

Proof. — Note that Z[a] = Z[a — 1] for all integer ¢ € Z. Up to replacing « by o — ¢ and
using Lemma 1.3.7, it suffices to show that if f( )=T"+a;T" '+ +a, is an Eisentein
polynomial for some prime p, then z = 1 z 20 Lzl ¢ Ok for z; € {0,1,--- ,p— 1} not
all zero. Put j = min{i|z; # 0}. Then

N g(a)? 3 i
Ng/o(z) = #NK/Q(Z Tio

We claim that NK/Q(Z?:_; Tt = 2! mod p. But the denominator of Z—JZ is divisible

by p, since p||[Ng/g(a) = (=1)"ay. Therefore, it follows that Ny g(z) ¢ Z, and hence
x ¢ Og. To prove the claim, let o1, - , 0, denote the complex embeddings of K. Then

n—1

n
Nk/o Z:Eloz ) = H zj+ xjpop(e) ™ + - .J;nilo.k(a)n—l—]).
i=J k=1

Expanding the product, we see easily that all terms, except for =", are divisible by p, since

] 9y
they can be expressed as linearly combinations of (—1)*ay for k& > 1, which is k-elementary
symmetric functions of aq, -, ay,’s.

O
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Example 1.3.9. — Let K = Q(a) with o® = 2. We see easily that Disc(1,a,a?) =
—3322. But f(T) = T3 — 2 is Eisenstein for p = 2 and f(T — 1) = T3 —3T? + 3T — 3 is
Eisenstein for p = 3. Hence, we get Ox = Z[a| by the previous Proposition.

We now give another property on the sign of the discriminant Ag. Let 0 : K — C
be a complex embedding. We say that o is a real embedding if o(K) C R; otherwise,
we say o is complex. Genuine complex embeddings of K always come in pairs. Actually,
the composition of ¢ with the complex conjugation, denoted by &, is another complex
embedding of K. We denote usually by r; the number of real embeddings of K, and by
ro the number of pairs of genuine complex embeddings so that n = ry + 2rs.

Proposition 1.3.10. — The sign of Ax is (—1)"2.

Proof. — We label the n embeddings of K into C as oy, --- , 0, such that o1,--- ,0,, are
real, and oy, 19; = Gy 42i—1 for 1 <i <rg. Let (aq,--- , ) denote an integral basis of K.
Then

det(a(ay)) = det(ai(ay)) = (=1)" det(ai(a;)),
because the matrix (d;(cy))1<i,j<n is obtained from (o;(;))i<ij<n by swiping the r; +
2i — 1-th and ry + 2i-th rows for all 1 <4 < ry. Therefore, if o is even then det(o;(c;))
is real, hence Ax = (det(o;(c;)))? is positive; and if 72 is odd then det(o;(;)) is purely
imaginary, thus Ag is negative. O

Remark 1.3.11. — By Lemma 1.3.1, the discriminant of any Q-basis of K has the sign
as Ag.

1.4. Cyclotomic fields

Let N > 3 be an integer, and {;y € C be a primitive n-th root of unity. Consider the
number field Q({n). Then for any o € Autg(C), o(¢y) must be also a primitive N-th
root of unity, hence of the form (% for some a coprime to N. Therefore, Q(({x) is a Galois
extension over QQ, and we have an injective map of groups ¢ : Gal(Q(¢x)/Q) — (Z/NZ)*.

Proposition 1.4.1. — The homomorphism ¢ is an isomorphism Gal(Q({y)/Q) =
(Z/NZ)*.

Proof. — To prove the subjectivity of ¢, it suffices to show that the image of every prime
p with pt N in (Z/NZ)* lies in the image of ¢ (since such elements generate the group
(Z/NZ)*). 1t is equivalent to showing that ¢}, is a conjugate of (x. Let f(T) € Z[T| denote
the minimal polynomial of (y, and write TV — 1 = f(T)g(T) with g(T) € Z[T]. Suppose
in contrary that ¢}, is not conjugate to (. Then one has g(¢X,) = 0, that is ¢, is a root of
g(TP). Since f(T) is the minimal polynomial of ¢,, one has f(T)|g(T?). Let f,g € Fpy[T]
denote the reduction modulo p of f and g respectively. Note that g(T')? = g(T?), so we
get f(T)|g(T)?. If o is any root of f(7T) in an algebraic closure F, of F,, then g(a) = 0.
Then means that « is a multiple root of F(T) = f(T)g(T). But F'(a) = Na™¥~! # 0 in
Fp, hence F(T) has no multiple root. This is a contradiction. O
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Corollary 1.4.2. — If N, M > 2 are integers with gcd(N, M) = 1, then we have Q({n)N
Q(¢m) = Q.

Proof. — Note that Q(¢{nar) = Q(Cawr)Q(¢n) as subfields of C. By field theory, one has
[Q(Carn) : QUEN)] = [Q(Car) = Q(Car) N Q(CN)]-

Therefore, Q((ar) N Q(¢n) = Q if and only if [Q({arn) : Q(CN)] = ¢(M), where ¢p(M) :=
#(Z/MZ)* is the Euler function. But this follows from

[Q(Cmn) : QCN)] = [Q(CmnN) : Q/[Q(¢N : Q)] = ¢(MN)/p(N) = ¢(M).

O
We manage to compute the discriminant of Q({x). We put
on(T) = ] (T-¢k)ezlT),
a€(Z/NZ)*

and call it the N-cyclotomic polynomial.

Lemma 1.4.3. — The discriminant of Q(Cy) divides NV,
Proof. — Since Agc,)|Disc(1, (n, - - - ,Cf,(N)_l), it suffices to prove the latter divides
NN Write TN — 1 = & (T)F(T) for some F(T) € Z[T]. Then we get
NTN=Y = &\ (T)F(T) + o (T)F'(T).
Thus NQ(CN)/Q((I)/(CN))‘NQ((N)/Q(NC]]\\;_I) = N?V). We conclude by Proposition 1.3.2.
O
Corollary 1.4.4. — If p is a prime, then the ring of integers of Q((pn) is Z[(pn].

Proof. — Indeed, ®,n»(X +1) is an Eisenstein polynomial for p, and the statement follows
from Proposition 1.3.8. 0

In order to generalize the previous Corollary to arbitrary Q({x), we need some prepa-
ration. Let K and L be two number fields, and KL be the composite field (inside C).
Consider the subring

OkOr ={ziy1 + - + 2,yr|zi € Ok, y; € Or}.

We have always OO, C Ok, but they are not equal in general. However, we have the
following

Proposition 1.4.5. — Assume that K N L = Q, and put d = ged(Ag,Ar). Then we
have Ok, C éOKOL.

Proof. — Let (a1, ,ay) and (B, ,Bmn) be integral basis of K and L respectively.
Any z € Ok, writes as

r= Z :j a;fBj, with z; j,7 € Z and ged(x; j,7) = 1.
7’7‘7
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We have to show that r|d. By symmetry, it suffices to prove that 7|Ap. Let (a))1<i<n be
the dual basis of (a;)1<i<n With respect to Trg /- Then we have

LTkl L4l
Trgepp(za)) =) TTTKL/L(O%BI@ )= Lﬁz
k.l !
On the other hand, we have ) € AL(’)K by definition of ozv and Cramer’s rule. So za €
ﬁOKL, and hence TI'KL/L(JJO[Z\-/) 7TI‘KL/L(OKL) C OL, i.e. AKTIKL/L(xa\/) €
Or. But (B)1<j<m is a basis of Or, over Z, thus Ay - ;J E Z for all 7, j, and so r|Axk.
O

Corollary 1.4.6. — Assume that K N L = Q and ged(Ag,Ar) = 1. Then we have
Ok =00y,

We can now prove
Theorem 1.4.7. — The ring of integers of Q((n) is Z[(N].

Proof. — We prove the statement by induction on the number of prime factors of V.
When N is a power of some prime p, then this is proved in Corollary 1.4.4. If N contains
several prime factors, then write N = nm with n,m > 1 and ged(n,m) = 1. By Corol-
lary 1.4.2 and Lemma 1.4.3, the assumptions of Corollary 1.4.6 are satisfied. We conclude
by induction hypothesis that Og(cy) = Og(c)OCa(cn) = Zllns Gm] = Z[CN]- O

We can also compute the exact value of Ag(,) when N = p", with p a prime.
Proposition 1.4.8. — We have
Ag(eny = Dise(1,Gry -, ¢ P7DTY) = T non),
where we have — if p =3 mod 4 or p” = 4, and we have + otherwise.

Proof. — The statement for the sign follows easily from Remark 1.3.11. Compute
n—1 1)

now |Disc(1, (pn, - - ,an (P=1) 1)|, which is equal to [Ng¢,.)/0(®pn (¢pn))| by Proposi-

tion 1.3.2, where

Tp —1 L ! n— 1
@ (T) = ey ZT”
If p = 2, then ®), (Con) = 27 1¢2 "1 and INg(cgn)/@(®hn (Con))| = 22" M n=1) If p > 3,

then

(Cp) P ICP" ! lz Cpn i D _ P lcpn ! 1(1)/(<p)

p—2

n—1 _ .
=g I ¢).

=1
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Therefore, |NQ(gpn)/Q‘ = p" (- D(n-D) f:_f INo,)/0(¢ — 1)[*"". But the minimal
polynomial of ¢, — 1 over Q is

Thus we have [Ng(,) /0(¢t —1)] = p, and the Lemma follows immediately. O






CHAPTER 2

DEDEKIND DOMAINS

2.1. Preliminaries on Noetherian rings

All rings in this section are commutative.

Proposition 2.1.1. — Let R be a ring, and M be an R-module. The following statements
are equivalent:

1. Every submodule of M (including M itself) is finitely generated.

2. For any increasing chain of submodules Ny C No C --- C N, C Npy1 C -+ in M,
there exists an integer m such that N, = Npy1 for all n > m.

3. Every non-empty subset S of submodules of M contains a mazimal element N under
inclusion, i.e. if N' € 8 contains N, then N = N'.

Proof. — We prove first (1) = (2). Given an increasing chain of submodules N1 C Ny C
-+ Np, C -+, put Nog = Up>1 Ny, Write Noo = (21, ,2,). If m > 1 is large enough so
that all x; € N,,, then N,, = N, for all n > m.

For (2) = (3), we assume that S does not contain any maximal element. Take an
arbitrary N7 € §. Since Nj is not maximal, there exists No € S such that Ny C Nj.
Continuing this process, we produce an increasing chain of ideals Ny C Ny C --- N, C
Np+1 © -+, whose existence contradicts with (2).

Finally, we prove (3) = (1). It is enough to prove that M is finitely generated, since
the same arguments apply with M replaced by any submodule N C M. Consider the set
S consisting of all finitely generated submodules of M. Then S is non-empty, because
(0) € S. Let N € S be a maximal element. For any z € M, N' = N + R -z is also finitely
generated and N C N’. Then one has N = N’ by the maximality of N. This implies that
r e N,ie. N=M. O]

Definition 2.1.2. — (1) We say an R-module M is Noetherian if it satisfies the equiv-
alent conditions in the previous Proposition.
(2) We say a ring R is Noetherian, if R itself is Noetherian as an R-module.

Proposition 2.1.3. — Let 0 — My — M — My — 0 be a short exact sequence of
R-modules. Then M 1is Noetherian if and only if both My and My are Noetherian.
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Proof. — The “only if” part is easy and left as an Exercise. Assume now both M; and M»
are Noetherian. Let NV be a submodule of M. Put N;y = M1 NN and Ny C M5 to be the
image of N. By assumption, both N7 and Ny are finitely generated. Let Ny = (1, , 2;),
and T,4+1, - ,ZTr4+s € N be such that their image in Ny generate No. Then we claim that
N is generated by x1,- -+ , 4. Indeed, for any © € N, there exist a, 41, - ,a,41s € R such
that the image of x — Y7 | ap4iyyi in Ny is zero, i.e. £ —> 7 | arii%rqi € Ni. Thus there
exist a1, ,a, € Rsuch that @ — Y7 | apqiryi = Y ;1 @i%;, that is @ € (21, -+, Trys).

O

Corollary 2.1.4. — Any finitely generated R-module is Noetherian.
Proof. — Indeed, any finitely generated R-module is a quotient of R®™ for some n. 0

Corollary 2.1.5. — (1) If R is a Noetherian ring, then any quotient of R is also Noethe-
rian.
(2) If Ry and Rs are Noetherian rings, then so is R1 @ Ra.

Proof. — (1) If R is quotient of R, then any ideal of R is finitely generated as R-module,
hence as R-module.

(2) It suffices to note that any ideal of Ry @ Ry is of the form I; & I where I; is an
ideal of R;. O

Exzample 2.1.6. — (1) Principal ideal domains such as Z, Q[X] are Noetherian.
(2) The ring Q[ X1, Xo, -+ , Xp, - - -] isnon-Noetherian. The ring of all algebraic numbers
is also non-Noetherian.

Finally, we have famous theorem of Hilbert.

Theorem 2.1.7 (Hilbert basis theorem). — If R is Noetherian, then R[X] is also
Noetherian.

Proof. — Let J C R[X] be an ideal. Let I C R denote the subset consisting of € R
such that there exists some f € J whose top coeflicient is a. Then we see easily that
I is an ideal of R. Choose f; = aivdiXdi + - +a;0 € J for 1 < i < r such that
I = (a14,, - ,0r4,). Let d = max;{d;}. The polynomials of degree < d contained in
J form a finitely generated R-module; let {gi, - ,gs} denote a set of generators over R.
Let f € J of degree n = deg(f). We claim that f is generated by {f1, -+, fr, 91, " ,9s}-
If n < d, then f is generated by {gi1,---,gs} (even over R). If n > d, then there exist
bi,---,b, € Rsuchthat f' = f—->"" | b; X"~ f; has degree strict less than n. Repeating
the process with f replaced by f’, one may finally reduce to the case of degree < d. [

Combining with Corollary 2.1.5, we have the following

Corollary 2.1.8. — If R is a finitely generated algebra over Z or over a field, then R is
Noetherian.



2.2. DEDEKIND DOMAINS 21

2.2. Dedekind domains

Definition 2.2.1. — An integral domain A is called a Dedekind domain if it is Noethe-
rian and integrally closed, and every non-zero prime ideal is maximal.

Exzample 2.2.2. — (1) Every principal ideal domain is a Dedekind domain, e.g. Z,
F,[X], C[X].

(2) For any number field K, O is a Dedekind domain.

(3) Let k be a field, F(x,y) € k[x,y] such that F(z,y), Fy(2,y) and F)(z,y) has no

common zeros. Then k[z,y|/(F(z,y)) is a Dedekind domain.

Proposition 2.2.3. — Let A be a Dedekind domain with fraction field K. Let L/K be
a finite separable extension, and B be the integral closure of A in L. Then B is also a
Dedekind domain, and is finitely generated as an A-module.

Proof. — It suffices to show that

(a) B is a finitely generated A-module (hence neotherian as an B-module) and,

(b) every non-zero prime ideal of B is maximal.
The proof of (a) is similar to that of Theorem 1.3.3. Choose ay,---,a, € B which
form a basis of L/K, and let (ay,---,a,) be the dual basis with respect to Trp/k. Put
MY =3, a/A. Then one has B C MY. As A is Noetherian and M is finitely generated,
it follows that B is a finitely generated A-module. For (b), let 8 be a non-zero prime
ideal of B, and let p =P N A. Then p is a non-zero prime ideal of A, and B/P is integral
over A/p. Since A is Dedekind by assumption, A/p is a field. Now (b) follows from the

following Lemma.
O

Lemma 2.2.4. — Let A C B be an extension of domains, and assume that B is integral
over A. Then B is a field if and only if A is a field.

Proof. — Assume first that A is a field. Let x € B. As «x is integral over A, it satisfies a
monic polynomial equation
"+ a4+ +a,=0, witha; €A

Up to canceling some powers of x, we may assume that a, # 0. Then a,, is invertible, so
is x. Assume now B is a field. Let y € A. Then y~! exists as an element in B. Then it
must satisfy some equation

Yy by ™ by, =0, with b; € A.

m=1 we see that

Multiplying both sides by y
y_l =-by+--— bmym_1 € A.

O]

Definition 2.2.5. — Let A be a domain with fractional field K. Then a fractional ideal
I of A is a sub-A-module of K such that there exists d € A with dI C A.
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If I and J are both fractional ideals of A, then
I+J={zeKlz=a+baclbel}, I-J={x=) abia; €lbcJ}

are both fractional ideals.
The main result of this section is the following

Theorem 2.2.6. — Let A be a Dedekind domain. Every ideal I of A has a factorization
I =pi'---p% where p; are distinct prime ideals and a; € Z>o; moreover, the factorization
of I is unique up to order, i.e. if I has two such factorizations pj*---p2r = qlf g,
then r = s and for each 1 < i < r, there exists a unique j such that p; = q; and a; = b;.

To prove this theorem, we need some preparation.

Lemma 2.2.7. — Let A be a Noetherian ring. Then every ideal I # 0 of A contains a
product of non-zero prime ideals.

Proof. — Let S be the set of ideals that do not contain any product of non-zero prime
ideals. Suppose that S is non-empty. Since A is Noetherian, S admits a maximal element,
say I. Then I must not be a prime ideal. Thus there exist a,b € R such that a,b ¢ I but
ab € I. Then consider I} = I + (a) and Iy = I 4 (b). Then I C I; for i = 1,2. By the
maximality of I, both I; and I will contain a product of prime ideals. But it follows from

LI, C (ab) +al +bI +1°C 1

that I should also contain a product of prime ideals. This is a contradiction.

O

Lemma 2.2.8. — Let A be a Dedekind domain, and p C A be a non-zero prime ideal.
Then

pli={zeKlz-pcC A}
is a fractional ideal of A, and p~tp = A.

Proof. — It is easy to see that p~! is a fractional ideal and A C p~'. Then we have
p C pp~! C A. Since the ideal p is maximal, we have either p = p~!p or p~lp = A. We
have to exclude the first case. Suppose in contrary that p = p~'p. Let {a1,--- , .} C p
be a subset of generators. Then for any € p~!, we have

Toy; = ZC@jO&j, for Cij € A.
J
If C denotes the matrix (¢; j)i<i j<n, we have det(zl, — C) = 0. Thus z is integral over
A. But A is integrally closed, we get € A. This shows that p~! = A.

Now to get a contradiction, it suffices to construct an element 2 € p~! but = ¢ A.
Choose 0 # b € p. Let r be the minimal integer such that p O (b) D py---p,, where all
p; are non-zero prime ideals. Such a r exists by Lemma 2.2.7. Then there exists a p;, say
1 =1, such that p D p; = p1, so p = py since every non-zero prime ideal in A is maximal.
Then pa---p, C (b) so that there exists a € pa---p, but a ¢ (b), i.e. a/b ¢ A. But we

=

have a/bp C %p1~~prCA, ie. ¢ epl. U
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Proof of Theorem 2.2.6. — We show the existence of the factorization. Let S denote the
set of ideals of A that are not product of primes. Suppose that S is non-empty. Denote
by I a maximal element in & by the Noetherianness of A. Then I can not be a prime.
Thus there exists a prime ideal I C p. By Lemma 2.2.8, we have A = p~lp D p~ 11 D I.
By the maximality of I, we see that p~'I is a product of primes, that is p~'1 = [Ti_s b
It then follows immediately that I = p[], pi.

Now we prove the uniqueness of the factorization. Suppose that [];_, p; = Hj q;. If
r > 1, then p; D szl q;j. It follows that p; D q; for some j. Since every non-zero prime
of A is maximal, we see that p; = q;. We may assume that j = 1. By Lemma 2.2.8, we
get [[i_opi = [[j—o4;- By induction, we see that every p; has to coincide with some g
and vice-versa. O

Corollary 2.2.9. — A Dedekind domain is a unique factorization ring if and only if it
18 a principal ideal domain.

Proof. — Let A be a Dedekind domain. We have already seen that if A is a principal
ideal domain, then A is necessarily a unique factorization domain (without assuming
A is Dedekind). We suppose conversely that A is a unique factorization domain. By
Theorem 2.2.6, it suffices to prove that every prime ideal p C A is principal. Choose
0+# x € p, and let © = p1 -+ - p, be a prime factorization of x. Then each of the principal
ideal (p;) is prime, and we have p|(x) = []._;(p;). There exists thus a p; such that p|(p;).
But (p;) is maximal, so we get p = (p;). O

Let A be a Dedekind domain with fraction field K. If I is a fractional ideal of A, we
put

IV = {z e K|zl C A}.

Then 17! is also a fractional ideal, and if I = []}_, p{* with a; € Z, then I=* = [[i_, p; “.
For any integer a € Z~q, we put I~¢ = (I*)~! = (I71)a.

Corollary 2.2.10. — Let I be a fractional ideal of a Dedekind domain. Then I has a
unique factorization I = [[;_, pi*, where each p; is a prime of A and distinct with each
other and a; € Z. Moreover, I is an ideal if and only if a; > 0 for all 1.

Proof. — The existence and uniqueness of the factorization follows from Theorem 2.2.6.
If all a; > 0, I is clearly an ideal. Suppose now that I is an ideal. If some of a;’s are
negative, say a1,--- ,as < 0 and asy1,--- ,a, > 0 for some 1 < s < r, then [T;_ pj* C
[, p;“ C p1. But this implies that p; D p; for some s +1 < ¢ < r. This contradicts
with the fact that p;’s are distinct.

O]

It is convenient to introduce the following notation: For two fractional ideals I, J, we
say that I divides J and write I|J, if J C I. For a fractional ideal I and a prime p, we
denote by wvp(I) the exponent index of p appearing in the prime decomposition of I. For
x € K, we put vy(x) = vp(()) if x # 0, and vp(x) = 00 if x = 0.
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Lemma 2.2.11. — Let I,J be fractional ideals of a Dedekind domain A. Then I|J if
and only if vy(I) < vy(J) for all prime p.

Proof. — Note that I|.J is equivalent to saying that J’ = I~1.J is an ideal of A. Since
vp(JI™Y) = vp(J) — vp(I), we are reduced to proving that J is an ideal of A if and only if
vp(J') > 0 for all prime p. But this follows from Corollary 2.2.10. O

The prime ideals in A behave like the usual prime numbers in Z, that is if p is a
prime ideal of A and p|IJ then either p|I or p|J. Note also that p appears in the prime
factorization of an ideal I, if and only if p|I.

Corollary 2.2.12. — Let 1,J be fractional ideals of a Dedekind domain A. Then
1. I ={x € K|vy(z) > vp(I) for all prime p};
2. vp(I +J) = min(vp (1), vp(J)) for all prime p;
3. vp(z +y) > min(vp(x),vy(y)) for all x,y € K and prime p;
4. vy(I N J) =max(vy(I),vp(J)).

Proof. — (1) x € I = I|(x) = vyp(x) > vp(I).

(2) If K is a fractional ideal containing both I and J, then v,(I) < vy(K) and vp(J) <
vp(K) by the previous Lemma. Since I 4+ J is the minimal fractional ideal with this
property, the statement follows.

(3) vp(z +y) = vp((z) + (y)) = min(vp(z), vp(y))-

(4) Similar to (2), I N J is the maximal fractional ideal contained in I and J. O

Exzample 2.2.13. — (1) If A = CJ[z], then A can be viewed as the algebraic functions on
C and its fraction field k(x) is the set of meromorphic functions on C. The set of primes of
A is naturally identified with C. If p = (x —a) and f € C(x)*, then v,(f) is the vanishing
order of f at z = a.

(2) Consider A = Z[y/—5]. We have factorizations

(2) = (2,14+vV=5)2, (3)=(3,1+V-5)(3,1—+v-5).

Definition 2.2.14. — Let A be a Dedekind domain with fraction field K.

(1) The set of fractional ideals of A form an abelian group (with addition given by
multiplication), which we denote by Z.

(2) A fractional ideal is called principal if it is of the form xA with x € K*. Principal
fractional ideals of A form clearly a subgroup of Z, and we denote it by P.

(3) We define Cl to be the quotient group Z/P, and call it the ideal class group of A
or of K.

By Theorem 2.2.6, the group Z is isomorphic to the free abelian group with basis given
by the set of primes of A, which is usually of infinite rank. However, in the case of number
fields, we have

Theorem 2.2.15. — Let K be a number field, then Cly is a finite abelian group.

The proof of this fundamental Theorem will be given in Section 4.1. For a number field,
we usually denote by hx the cardinality of Clgx, and call it the class number of K.
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2.3. Localization

In this section, let A be a domain and K be its fraction field.

Definition 2.3.1. — (1) A subset S C A is called multiplicative if s1,s9 € S implies
s182 € S. For a multiplicative subset S, we define

SA:={%acAsecS)CK,
S

which a subring of K.
(2) If p is a prime ideal of A, then S, = A\ is multiplicative, and we put A, = nglA.
We call A, the local ring of A at @, or the localization of A at g.

Example 2.3.2. — (1) If f € A is non-zero, then Sy = {f"|n € Z>¢} is multiplicative.
We have Sj?lA = A[%] For instance, the prime ideals of Z[%] are (0) and pZ[Z] for any
p16.

(2) For a prime p, then Z,) = {7} € Q|p { n}. Note that Z,) has two prime ideals,
namely pZ, and (0).

Let S C A be a multiplicative subset, A’ = S~'A. Let I be an ideal of A, then
A =5T={%%aclses
s

is an ideal of A’. Tt is clear that if SN 1T # (), then TA" = A’. Conversely, if I’ C A’, then
I =ANT is also an ideal of A disjoint with S. It is always true that (I’NA)A’ = I, but,
in general, it is not true that A’ N A = I. For instance, if A =Z, S = {4"|n € Z>¢} and
I=(10), I'nA=(5).

Lemma 2.3.3. — Let S C A be a multiplicative subset, and A’ = ST'A. Then p s pA’
establishes an order preserving bijection with set of prime ideals of A disjoint with S and
the set of prime ideals of A’, and its inverse is given by p’ — p’' N A. In particular, if
Al = A, for some prime ideal p C A, then pA, is the unique maximal ideal of A, and
Ay /pAg is the fraction field of A/p.

Proof. — Let p be a prime of A. It is clear that p C pA’'NA. If z = 2 € pA’'N A, then
a=1xs €p. But pnS = (), it follows that € p. This proves that pA’ N A = p, i.e.
pA'NA=p If A=A, then any ideal of A, has the form IA for some ideal I C A.
But TA" # A" if and only if I N (A\p) =0, ie. I C p or equivalently A, C pA.

[

Proposition 2.3.4. — Under the notation of Lemma 2.8.3, the following holds:

1. If A is a Noetherian ring, then so is A’ = S™LA.

2. If B is the integral closure of A is a finite extension L/ K, then S™'B is the integral
closure of S~YA in L.

3. If A is integrally closed, then so A’.

4. If A is Dedekind, then so is A’.
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Proof. — Statement (1) follows from the fact that every ideal of A’ has the form A" with
I C A an ideal.

For (2),letz = b/s € STIB. If f(T) = T"+a;T" ' +-+a, € A[T]is a monic polynomial
such that f(b) = 0, then g(z) = 0 with ¢(T) = T" + a;s'T" ' 4+ --- 4 a,s" € STLA.
Conversely, if € L is integral over S~!A4 and g(x) = 0 for some monic polynomial
g(T)=T"+c1T" 1 4+ ¢, with ¢; € ST A, then there exists s € S such that s¢; € A.
Then sz is the root of f(T) = T" + sc;T" ' + -+ + s"¢, € A[T]. Therefore, sv € B and
r € STIB. Statement (3) is a special case of (2).

For (4), we note that if m C A is a maximal ideal disjoint with S then S~'m C A’ is
also maximal, because the image of S in A/m is already invertible. Combined (1) and (3),

we see that A’ is also a Dedekind domain.
O

Proposition 2.3.5. — Let A be a Dedekind domain, and A" = S™'A for some multi-
plicative subset S.
1. Let p C A be a non-zero prime, and p' = pA’. Thenp' = A" if SNp £ 0, andp’ C A’
is a mazimal ideal of A" with A/p = A’ [y’ if p is disjoint with S.
2. If I is a fractional ideal of A with prime decomposition I = [;_, pi*, then I' = T A’
is a fractional ideal of A" with prime decomposition I' = [[_, pi**, where p; = p; A’
3. Let I = []i_, pS" be an ideal of A such that each e; > 0 and p; is disjoint from S.
Then the natural map A/I = A'/TA" is an isomorphism.
4. Assume that S = A\p for some prime o C A. Then all the nonzero ideals of A" = A,
is of the form @™ with ¢ = pA,, for n > 1. Moreover, if T € p\p?, then we have
" =m"Ag; in particular, Ay is a principal ideal domain.

Proof. — Statement (1) is clear.

(2) Tt is clear that I’ is a fractional ideal of A’. Note that J tA’ = (JA’)~! for any
fractional ideal J of A, and (J1J2)A" = J; A’ J, A’ for any fractional ideals Ji, J; of A. The
statement (2) follows immediately.

To prove (3), we proceed by induction on ¢(I) := )", e; > 1. When ¢(I) =1, then I =p
is a prime disjoint with S. The statement is verified in (1). Now assume that {(I) =n > 1
and the statement is true for any ideal J C A with £(J) =n — 1. Put J = pS* ' ]I, pit,
I'=TA" and J' = JA'. Then we have a commutative diagram of exact sequences:

0 J/T A/T AJJ 0
-
0 J' T AT — A ] —0

By inductive assumption, the last vertical arrow is an isomorphism. Note that J/I and
J'/I' are both vector spaces over k(p1) := A/p1. If x € J\I, then J = zA + I and
J'=xzA'+1I'. Thus the k(p;)-dimensions of J/I and J'/I" are both one. Choose 1 € J\I.
Then the image of 21 in J'/I’ is non-zero, since vy (z1) = vy(x) by (2). Therefore, the
first vertical arrow is also an isomorphism. It follows from an easy diagram chasing that
so is the middle vertical one.



2.3. LOCALIZATION 27

(4) If T is an ideal of A, we have A, = @) = o)A by statement (2). Thus
all the ideals of A" are of the form ¢. Let x € ™. Then vy(z/7") = vy(x) —n > 0.
Note that ¢’ is the unique prime of the Dedekind domain A’. The statement follows from

Corollary 2.2.12(1).
O






CHAPTER 3

DECOMPOSITION OF PRIMES IN NUMBER FIELDS

3.1. Norms of ideals
Let K be a number field, and Ok be its ring of integers.
Definition 3.1.1. — Let 0 # I C Ok be an ideal. Define the norm of I to be
N(I) = #(0k /1) =[Ok : I].

Proposition 3.1.2. — 1. If I = (x) for some x € Ok, then N(I) = [Ngg(x)].
2. We have N(I.J) = N(I)N(J) for any ideals I, J C Ok.
3. For n € Z>o, there exist only finitely many ideals I C Ok such that N(I) =

Proof. — (1) Let (a1, ,an) be a Z-basis of Og. Then there exists a matrix C' €
M,,xn(Z) such that

(l’al, T ,$Oén) = (ah T 7an)C-
It follows that

N(I) =[Ok : I] = Zz o : ZZ zoy] = | det(C)|.

But by definition, Ng q(r) = det(C).
(2) By Theorem 2.2.6, it suffices to show that

N([ [ p:) = NpON( ] »:)
i=1 i—2

for any prime ideals py,---,p,. First, note that k(p1) := Ok /p1 is a finite field, since
p1 C Ok is maximal. We claim that [[;_, pi/ [[;_; pi is a k(p1)-vector space of dimension
1. Assuming this claim, we see that

[OK:ngzp gpz HP = #k(p1) = N(p1),

which is clearly equivalent to the assertion needed. It remains to prove the claim. Since
[Ti_ipi # [1;_ypi by Theorem 2.2.6, there exists = € []/_,p; but = ¢ [[;_, p;. Then we
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have
.

[Ioic@+]]pic]]pi=rc@][[pi'+mcA
i=1 i=1 =2 =2
It follows immediately that (z) [[/_op; ' +p1 = A, that is (z) + [[—, pi = [T}—y pi-

(3) If I C Ok if an ideal of norm n, then (n) C I C Og. Note that Ok /(n) is finite of
cardinality n*@. Therefore, there are only finitely many possibilities for I. O

If I = ab~! is a fractional ideal with a,b C A ideals, then we define the norm of I as
N(a)
N(I) == —= € Q*.
(1) = ) €@
Using the previous Proposition, we check easily that N(I) is independent of the writing
I=ab"l.
Definition 3.1.3. — We put
6 ={z € K|Trg q(zy) € Z, Vy € Ok }.
This is a fractional ideal containing Ok. We define the (absolute) different of K to be
0 = (5;(1)_1.
Proposition 3.1.4. — We have N(0k) = |Ak].
Proof. — Let (ai,--- ,ay) be a Z-basis of Ok, and (ay,--- , ) be its dual basis with
respect to Trg/g. Then 6 =@, Z-aY, and a; = >, Trrjg(aiay)ay. Therefore,
|Ax| = | det(Tr g (ciay))| = [P Zey - €D Za]

= [0 : O] =[Ok : 6x] = N(0k).

3.2. Decomposition of primes in extension of number fields

Let L/K be a finite extension of number fields, and p # 0 be a prime of Ox. We have
a prime decomposition

pOL =P - By’
Definition 3.2.1. — (1) We put
e(Bi/p) = ei = vy, (pOL),

and call it the ramification index of ; above p.
(2) Note that k(;) = O /B; is a finite extension of k(p) = O /p. We put

J(Bilp) = [E(PBi) : k(p)],
and call it the residue degree of 3; above p.
(3) We say that p is
— unramified in L/K, if e(P;|p) = 1 for all i,
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— split in L/K, if e(Pi|p) = f(Pilp) = 1 for all 4;

— anert in L/K, if g =1 and e(P1]p) = 1;

— ramified in L/K, if e(P;|p) > 1 for some i;

— totally ramified in L/K, if g =1 and f(P1|p) = 1.

Proposition 3.2.2. — Under the above assumptions, then the following statements hold:
1. A prime B of O, appears in pOr, if and only if PN Ox = p.
2. We have 377_; e(ilp) f(Rilp) = [L : K].

Proof. — (1) Note that B N O is always a non-zero prime of O. Statement (1) follows
immediately from the prime decomposition of pOy,.
(2) Let ¢ denote the cardinality of the residue field k(p) = O /p. Then we have
g g
(0L :pOL] =N(pOL) = [[ NP = [[¢* = gz el
i=1 i=1
Note that O /pOy, is a finite dimensional vector space over k(p). Thus the above compu-

tation shows that :

dimy,) Or/pOr, = Z eifi.
i=1
To conclude the proof, we have to show that dimy,,(Or/pOr) = [L : K].

— Consider first the special case that Of, is a free module over O (e.g. K = Q).
Then the rank of Op over Ok must be [L : K] (because L = O ®p, K), and
OL/pOr = O ®o, Ok /pOk is also free of rank [L : K| over k(p) = Ok /pOk.
Thus our proof is finished in this case.

— In the general case, we consider the localizations of Ok and O with respect to
the multiplicative subset S = Ok \p; we denote the localized rings respectively by
Ok, and Op,. By Proposition 2.3.4, both Ok, and O, are Dedekind domains;
moreover, Ok, is a principal ideal domain by 2.3.5(4). Since O, is a finitely
generated torsion free Ox-module (O is finitely generated over Z hence over Of),
thus O, must be free over Ok of rank [L : K]. It follows that O ,/pOr, is of
dimension [L : K] over k(p). But Or/pOr, = Or,/pOr, by Proposition 2.3.5, this
implies that dimy,)(Or/pOp) = [L : K].

O
Theorem 3.2.3 (Kummer). — Let a € Or, be such that Or/pOr, = (O /p)|a], where

& denote the image of a. Let f(X) € Og[X] be the minimal polynomial of o. Assume
that

FX) =[] 9:(X)% mod pOk([X],
=1

where e; > 1, and g;(X) is a monic polynomial whose image in k(p)[X] is irreducible and
distinct with each other. Then B; = pOr, + gi(a)Op, is a maximal ideal of Oy, for each i,
and we have the prime decomposition

(3.2.3.1) pOL =P - Py,
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with residue degrees f(B;|p) = deg(g:).
Proof. — Put k(p) = Ok/p. We have

OL/PBi = (OL/p0O1)/(9:(a)) = (Ok /p)[a]/(g:(@)) = k(p)[X]/(9:(X)).
Since g;(X) is irreducible in k(p)[X], the quotient k(p)[X]/(g:(X)) is a field. This shows
that B; is a maximal ideal of 0. Moreover, we have
f(Bilp) = [Or/Bi : Ok /p] = deg(gi) = deg(gi)-

To prove the decomposition 3.2.3.1, we note that

g
Or/pOy = k(p)[a] = k(p)[X]/(F(X)) = [ [ k() [X]/ (55" (X))
i=1

Here, the last step used Chinese reminder theorem. On the other hand, note that

k(p)[X]/(357 (X)) = (OL/pOL)/(g:(@)) = OL/(pOL + g7 ().
Hence, to finish the proof, it suffices to show that P = (p,g;*(a)) for 1 < j < e;. We
have P = (p, gi(@)) C (p,9; (o). We deduce B;" = (p, g;' («)) from the equality
dimy,p) Or/(p, g;" () = dimy) k(p)[X]/(g7" (X)) = ei dimy) k(p)[X]/(9:(X))
= €; dimk(p) OL/‘Bz = dimk(p) OL/‘B?
O

Remark 3.2.4. — We have two important special cases where the assumption
OL/pOr = (Ok/p)la] is satisfied:

1. If O, = Ok|[a], then Theorem 3.2.3 can be applied to any prime p of Og-.
2. If a € Op such that p{ N/ (f'(«)), then Op/pOr = (Ox /p)[a].

Theorem 3.2.5. — Let K = Q(v/D) with D a square-free integer. Let p be a rational
prime. Then

1. p is ramified in K if and only if p|Ak; in particular, 2 is ramified in K if and only
if D=2,3 mod 4;

2. if p is odd and unramified in K, then p splits in K if and only if <%> =1;

3. when D =1 mod 4, then 2 splits in K if and only if D =1 mod 8.

Proof. — We write O = Z[a], for « = v/D if D =2,3 mod 4 and a = % ifD=1
mod 4. Then the minimal polynomial of « is

x2+x+% if D=1 mod 4,
f(x): 2 . .
z“—D if D=2,3 mod 4,

and Ag coincides with the discriminant of f(z).

(1) By Theorem 3.2.3, p is ramified in K if and only if f(z) = (x — a)? for some a € F,,
where f(z) € F,[z] denotes the image of f(z). The latter condition is equivalent to saying
that p|Agk.
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(2) Assume p odd and unramified in D. We have p{ Ag by (1). By Theorem 3.2.3, we
have the following equivalence:

psplitsin K < f(x) has distinct roots inF,,.
So if f(x) = (¥ — a)(z — b) with a,b € F, and a # b, then A = (a — b)? mod p, or
equivalently (%) = 1. Conversely, if (%) = 1, assume that D = ¢? mod p with p { c.

Then 1£¢ (resp. £c) are two distinct roots of f(z) in F, if D =1 mod 4 (resp. if D = 2,3
mod 4). -

(3)If D=1 mod 8, then f(X) = X*+X has two distinct roots in Fo. If D =5 mod 8,
then f(X) = X2+ X + 1 is the unique irreducible polynomial of degree 2 in Fo[X]. [

We have the following transitivity of ramification and residue indexes:

Proposition 3.2.6. — Let L/K be as above, and M/L be another finite extension. Let
Bas be a prime ideal of M, Br, =V N O, and p = Ox N Pas. Then we have

SBalp) = fF(Ba[BL)f(Berlp),  e(Bamlp) = e(PBuBr)e(Belp).
Proof. — The equality for f(Pas|p) follows from
[Or /B = O /9] = [Ont /B = OL/BLOL/Br : Ok /p).

For the equalities on ramification indexes, we have
pOu = pOr, - Opr = H ;BEL@LW)OM _ H ( H ;B?\EI‘BMWL))e(‘ﬁLIP)'
Brlp PBrlpOr BumlBr

Note that for a fixed Py, there exists a unique prime B, of O, such that P[P, namely
PBr =Py N Or. Therefore, we get

POy = H ;B?\E[‘BMWL)@WLW)’
Paslp

that is, e(Baslp) = e(Pu|Br)e(PLlp). -

Finally, we give a criterion for a prime p to be ramified in a number field.

Theorem 3.2.7. — Let K be a number fields, p be a rational prime. Then the following
statements are equivalent:

1. p is unramifies in K.

2. The ring Ok /pOf is reduced (i.e. it has no nilpotent elements).

3. The Fp-bilinear map Tr g : Ok /(p) x Ok /(p) = Fp sending (x,y) to Tryg(zy)
mod p is non-degenerate.

4. pt Ak, where Ak denotes the discriminant of K.

Proof. — (1) < (2): By Chinese remainder Theorem, we have

(3.2.7.1) Ok /pOx = H@K/pe(P/p)‘
plp
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Note that each O /p¢ is reduced if and only if e(p|p) = 1, because z¢P®/P) = ( for any

x € p/p*.
(2) < (3): Note that if z € Ok /pOk is nilpotent, then zy is also nilpotent for any

y € Ok /pOk, hence ﬁK/@(:cy) = 0. Hence, if ﬁK/Q is non-degenerate, then O /pOxk
is reduced. Conversely, if Ok /pOk is reduced, then we have necessarily Ok /pOx =
@Dy, k(p) by (3.2.7.1), where k(p) = Ok /p is a finite extension of F,. Since F), is perfect,
Try(p)/F, s non-degenerate by Theorem 1.2.4. It follows that ﬁK/@ = @plp Tryp)/F, 18
non-degenerate.

(3) & (4): Let (aj)i<i<n denote a basis of Ok over Z, and &; € Og/(p) de-
note the image of «;. The pairing ﬁK/@ on Og/(p) induces an F,-linear map:
¢: Or/(p) = (Ok/(p))Y, where (Ok/(p))" denotes the F,-dual of Ok /(p). If (&) )i<i<n
denotes the basis of (Ok/(p))" dual to (&;)1<i<n, then the matrix of ¢ under the basis
()i and (&) is Trg g (a;ay;). Hence, the pairing ﬁK/@ is non-degenerate if and only if
det(Tr/g(a;)) # 0 in Fp, ie. ptdet(Try g (uey)) = Ag. This finishes the proof.

]

3.3. Relative different and discriminant

Let L/K be a finite extension of number fields.

Definition 3.3.1. — For a non-zero prime ideal P of O, we put

Np/k(B) = p/ /P,

where p = PN Ok, and f(P|p) = [Or/PB : Or/p] is the residue degree of P/p. For an
arbitrary fractional ideal I = [];_, B;", we put

Npw(I) = [ NEB)™.
=1

Then Ny /x(I) is a fractional ideal of K, and we call it the norm of I relative to L/K.

Lemma 3.3.2. — 1. We have Ny i (IJ) =N g (I)Np /x(J) for any fractional ideals
1,J of L.
2. When K = Q, then we have Ny, o(I) = (N(I)) for any fractional ideal I of L, where
N(I) € Q* is the absolute norm of I defined in Section 3.1.
3. If I = JOL, for some ideal J C O, then Np i (I) = JILK],
4. If M/L is another finite extension, then one has

Ny (1) = Npye(Nag/n(1))
for any fractional ideal I of M.

Proof. — Statement (1) is immediate from the definition. Statement (2) follows from the
fact that, if 3 is a prime of @, above p, then p/¥lP) = #(O /PB). To prove (3), we may



3.3. RELATIVE DIFFERENT AND DISCRIMINANT 35

assume that J = p is a prime of Ok. If pOr, = []%_; B{' is the prime decomposition of p
in Oy, then

Np/k(pOL) = HNL/K o = plizieifi = pllK],
Finally, (4) is an easy consequence of Proposition 3.2.6. O

Definition 3.3.3. — We put
5L/1K ={r € L|Trp )k (vy) € Ok, Vye€ Or}.

This is fractional ideal of L containing Or. We put 67/ = (52/1K)*1, and call it the
relative different of L/K. We define the relative discriminant of L/K to be

Discr/x = Ny (00/k)-

It is clear that ;g = d1 defined in Definition 3.1.3, and Discy g = (Ar) by Proposi-
tion 3.1.4.

Lemma 3.3.4. — For any fractional ideal I of Ok, we have
10,67y = {w € L Trp i (w) € I}
Proof. — The statement follows from the following equivalences:

Trr k() €I<:>TrL/K(:UI_ Ve Ok @zl 'O, Cé7l. oz elO 6]

L/K L/K*

O
Proposition 3.3.5. — If M/L is a further finite extension, then 0y x = oL/ kOM-Op)L-
Proof. — This follows from:
x €0y & Tryyr(vy) € Ok, Yy €Oy
& Trp g o Tryy(vy) € Ok, Yy €Oy
& Tryy(zy) € 51;/11{7 Yy € Oy

S e 5M1/L 5£/K(’)L (by the previous Lemma).

O
Corollary 3.3.6. — Under the situation of the Proposition, one has
Discyy/ g = NL/K(DiSCM/L)DiSC[L]\;[I:é:].
Proof. — This follows easily from the Proposition by applying Njs/x - ]

Proposition 3.3.7. — Let L1 and Lo be number fields such that L1 N Ly = Q, and
M = L1L2. Then

1. 5L2(9M C 5M/L1;'
2. Ay divides AFFY . Al
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3. if gcd[(Aé]l,ALQ) =1and [M: Q] = [L : QL2 : Q], then |Ay| = |Ap,|F2@ .
‘AL2|L1: :

Proof. — (1) The Q-algebra L ® Ly (or simply L; ® Lg) has a decomposition

,
Li® Ly = @ M;,
i=1
such that M is one of the direct factors. Let p : L1 ® Ly — M denote the canonical
projection. Then Op,gr, = @, O, is the integral closure of Z in L1 ® Lo, and we
have OL1 &® OL2 - OL1®L2 and OL10L2 = p(OLl X OLz)' Note that TrL1®L2/L1 =
@, Tras, 1., and that 6211®L2/L1 =
that Trp, o r,/1, (vy) € Or, forally € O, g1, Let (B;)1<j<m be an integral basis for Of,,
and ( B]V) j denote its dual basis with respect to the pairing on Ly induced by Try, o. Then
every x € L1® Lo writes uniquely asx = } -, xj®5jv withz; € Ly. I Trp, g, /1, (vy) € OL,
for all y € O, ® OL,, then we have z; = Try/r, (z8;) € OL,. Since 5;21 = Zj Zﬂjv, we

have x € O, ® 5;21 C 5221(9L1®L2. Hence, 5;11®L2/L1 C 5;21(’)L1®L2. Applying p, we have

bD;_, (5;/[1 /1, consists of elements x € L1 ® Ly such

5];[1/L1 C (5;21(’)1\/1, or equivalently 6r,0n C dpy/p, -
M ; . )
(2) Taking Njps/z,, we see from (1) that Discyyyp, divides Nps/p, (60,0n). Therefore
by Corollary 3.3.6, Aj; must divide

Nz,/o(Nayz, (0r, OM))A[LAf:Lﬂ =Nz,/0° Ny, (0L, C’)M)A[Lj\f:h]

_ A%:Lﬂ A[[]Z[:Lﬂ .

The statement now follows immediately from [M : L] < [Ls: Q] and [M : Lo] < [L1 : Q].
(3) By Corollary 1.4.6, we have Oy = Of, OL,. It follows easily that 657/1,, = 01,0,
thus Discy/p, = Ar,Opn. Then statement (3) follows immediately from the arguments

for (2) above.
O

Corollary 3.3.8. — Under the situation of the Proposition, a rational prime p is un-
ramified in M if and only if p is unramified in both L1 and L.

Proof. — If p is unramified in M, then it is clearly unramified in both L; and Ly by the
transitivity of ramification index. Conversely, if p is unramified in both L; and Lo, then p
is coprime to Ap, A, by Theorem 3.2.7, so it is coprime to Ajs by the Proposition. By
Theorem 3.2.7 again, p is unramified in M. O

3.4. Decomposition of primes in Galois extensions

Let L/K be a finite Galois extension of number fields with G = Gal(L/K). Two
fractional ideals I1 and I are called conjugate under GG, if there exists ¢ € G such that
O'(Il) = IQ.
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Let p be a prime of Ok with prime decomposition in Op:

g
O, = Hm?, with e; > 1 and 93; distinct.
i=1

Since pOy, is invariant under G, the group G stabilizes the set {P1,--- , B4}

Proposition 3.4.1. — Any two primes P; and *B; are conjugate under G, and we have

eimer ==y, [i= [(Pilp) =+ = [(Bylp), and [L: K] = efg.

Proof. — Note that for any o € G, we have pOy, = o(p)Op,, which implies that [[_; PB{" =
9, o(PBi). Hence, ¢; = €s-1(;) by the uniqueness of the prime decomposition. More-

over, if o(*B;) = P;, then ¢ induces an isomorphism

o:0L/Bi = O/,

and hence f(;/p) = f(B;/p). By Proposition 3.2.2, to complete the proof, it suffices to
show that any J3;, there exists o € G such that o(1) = B;. Suppose in contrary that
some P’ = P; is not conjugate to P, i.e. for any o € G, o(P1) # P1. By Lemma 3.4.2
below, there exists 2 € P’ such that x ¢ (1) for all o € G, or equivalently o(z) ¢ P
for all 0 € G. But then N /g () = [[,cq o(®) € P1 N Ok = p, which contradict with the
fact that Ny /i (z) € B'N Ok = p.

[

Lemma 3.4.2. — Let R be a commutative ring, p1,---,pr be prime ideals of R, and
b C R be an ideal such that b & p; for any 1 < i < n. Then there exists x € b such that

x & p; for any i.

Proof. — We may assume that p;  p; for any i # j. Take z;; € p;\p; and a; € b\p; for
1 <i<nsince b € p;. Then b; = a; H#i x; ; belongs to b N (ﬂj# p;) but not p;. Put
z=>_1bi. Then x € b and x = b; mod p; for all i. O

Definition 3.4.3. — For a prime ideal P of O with p =P N Ok, we put

D(Blp) = {0 € Glo(B) = B},

and call it the decomposition group at B relative to p. Any o € D(P|p) induces an
automorphism

o k(P) = OL/PB = Or/a(P) = k(P).
which fixes the subfield Ox. We get thus a homomorphism

ey : D(PB[p) — Gal(k(P)/k(p)).
We define

I(Blp) := Ker(pyp) = {0 € D(Bp)lo(z) =z mod P, Vo € O},

and call it the inertia subgroup of 3 relative to p.
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Proposition 3.4.4. — 1. The extension k(B)/k(p) is Galois, and the map @ is sur-
jective, i.e. we have an exact sequence

1= I(Plp) = D(Blp) = Gal(k(P)/k(p)) — 1.

Moreover, one has e(B|p) = #1(Blp), and f(Plp)e(Plp) = #D(Blp).
2. For any T € G, we have D(7(B)|p) = 7D(P|p)7~L and I(T(P)|p) = 7I(Vlp)7 L.

Proof. — We denote simply Dy = D(*B|p) and Iy = I(Blp). Statement (2) is immediate
by the definition of D(B|p) and I(P|p). It remains to prove (1). By Proposition 3.4.1, G
acts transitively on the set {8 =P, - ,"By} of primes above p, and Dy is the stabilizer
of G on PB. We see that g = [G : Dy, but #G = efg, with e = e(B|p) and f = f(P|p).
It follows that # Dy = ef.

Let M = LP% and N = L™, and Lp = PN Oy and Pr = PN Oy. Then for any
o € Dy = Gal(L/M), we have

o(Bp) =o(P)N Oy =PNOy =Pp.

It follows from Proposition 3.4.1 that 3 is the only prime above B p; so is the same for ;.
Suppose that PpOp, = B¢ Then by the transitivity of ramification and residue indexes,
we have ¢’|e and [’ := f(P|PBp)|f. However, by Proposition 3.2.2, it follows that

ef =#Dy=[L: M]=¢€f"

Hence, we get e = ¢’ and f = f’. Similarly, assume that ;O = PB¢. Then one has
e’le/ = e. Let a € k(*B) be an arbitrary element. Take o € Op a lift of @, and let
f(X) € On[X] be the minimal polynomial of o over N. Then we have

FX) = IT (X = a(a).

UEIm

By definition of Iy, we have o(a) = a mod B, that is o(a) = a. If f(X) € k(Pr)[X]
denotes the reduction of f(X), then f(X) = (X —a)#™. Since any Galois conjugate of
& must be a root of f(X), it follows that & € k(B;). Hence, we see that f(B/B;) = 1.
By Proposition 3.2.2, we have #Ip = ¢’ < e. By definition, ¢y induces an injection
Dy /Iy — Gal(k(B)/k(p)). But note that

#(Dyp/Ip) = # Dy /#Ip = ef /" > f

and # Gal(k()/k(p)) = f. Hence, ¢y must be surjective and #Ip = e.
O

The following Proposition is very useful when considering the problem of sub-extensions.

Proposition 3.4.5. — Let K'/K be a sub-extension of L/K, and H C G denote the
subgroup such that K' = L. We fix a prime B of Oy, let p = Oxg NP and p’ = PN Ok-.
Then B is the only prime above ' if and only if H C D(B|p) or equivalently LPFIP) C K’
and e(p'|p) = 1 if and only if I(Plp) C H or equivalently K' C LIFIP),
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Proof. — By definition, it is clear that D(B|p’) = D(B|p) N H and I(Plp') = I(Plp) N H.
Then by Proposition 3.4.4, 98 is the only prime of Oy, above p’ if and only if H = D(B|p’),
or equivalently H C D(B|p); and e(p’|p) = 1 if and only if e(Pp’) = e(Plp) by the
transitivity of ramification index. By Proposition 3.4.4, this is equivalent to I(B|p) N H =
I(*B|p), that is I(Plp) C H. O

The following is a generalization of Corollary 3.3.8.

Corollary 3.4.6. — Let Ly and Lo be finite (not necessarily Galois) extensions of a
number field K, and LiLo be their composite inside an algebraic closure of K. Then a
prime p of Ok is unramified in Ly Lo if and only if it is unramified in both L1 and Lo.

Proof. — Choose a finite Galois extension M /K containing both L;Ly. Let H; and Hj
denote the subgroups of Gal(M/K) that fix L and L9 respectively. Then L; Ly is the fixed
field of HiNHjy. By the Proposition, p is unramified in L Lo if and only if 1(B|p) C H1NH2
for every prime B of M above p, or equivalently I(B|p) C H; and I(*B|p) C H2. By the
Proposition again, the latter condition is exactly equivalent to that p is unramified in L
and Lo. O

Now assume that the prime p is unramified in O, and P be a prime of Of, above p.
Then we have I(B|p) = 1 and D(B|p) = Gal(k(R)/k(p)). Let ¢ = N(p), and ¢/ = N(B).
Then it is well known that Gal(k(*B)/k(p)) = Z/fZ with a canonical generator given by
oq:x — x9 for any x € k(). We denote by

o= (55 ) € D¥lp

the element corresponding to oy, that is the unique element of D(|p) with
op(r) =27 mod*P, Ve Or.
We call o the Frobenius element of B over p. It is clear that ogp is a generator of

D(B|p) = Z/fZ, and the Frobenius elements verify the following properties:
1. For any 7 € Gal(L/K), we have

() (4

2. If M/K is a Galois sub extension of L/K and Byr =P N Oy, then we have

<Lé3ff>'M _ (%) <Ls§4> _ (Lg()f(mf/p)

It follows from (1) and Proposition 3.4.1 that if ¥’ is another prime of O above p,
then the Frobenius element of 9P’ is conjugate to that of 3. Therefore, if Gal(L/K) is

abelian, then these two Frobenius elements coincide; in that case, we denote it common

by oy = (L/TK)
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Example 3.4.7. — We put L = Q(+v/2,v/-3). Then G = Gal(L/Q) = (0,7)/(c® =
2 = 1,07 = 70?%), where o(V/2) = wV/2 with w = _1%\/?3 and o(y/—3) = /-3, and
7(V/2) = ¥/2 and 7(v/=3) = —/=3. A rational prime p ramifies in L if and only if
p=23.

(1) The prime 2 is inert in Q(v/—3) and ramifies in Q(+/2). So there exists a unique
prime po in Of of degree above 2 such that 20, = p3. We have D(ps]2) = G, and
1(p2]2) = Gal(L/Q(v=3)) = (o).

(2) The prime 3 is ramified in both Q(y/—3) and Q(+/2), so its ramification degree in
L/Q is divisible by 6. Thus we see that 3(’)L = p$ for some prime p3 of residue degree 1
above 3. We have D(p3|3) = I(p3|3) =

(3) It is easy to see that p = 5 is 1nert in K Q(v/—=3) so that Ok /(5) = Fa5. Note that
2% — 2 has 3 distinct solutions in Fas, and exactly one of them is in Fs, namely x=3€ls.
Therefore there are 3 distinct primes of Of, above 5: p5 = (5,v/2-3), p5 = (5, v/2—3w)
and p5 = (5, V2 — 3w?) with w = 71+F, and each of them has residue degree 2 over
5. The decomposition group of pé ), p(g) and pég) are respectively Gal(L/Q(v/2)) = (),

Gal(L/Q(+/2w?)) = (o7) and Gal(L/Q(+/2w)) = (c%7). The Frobenius elements of pé ),
péz) and pg‘g) are respectively 7,07, 027.

(4) Consider the case p = 7. Then 7 is split in Q(F) and inert in Q(+/2). Thus 7 splits
in Ok into two primes of degree 2, namely p7 = (7,v/-3+2) and p(2) (7,v/=3 —2).
The decomposition groups of both pg) and pg are both Gal(K/Q(v/=3)) = (o). The
Frobenius element T is the unique element of Gal(K/Q(v/—3)) such that

ap(;)( z) =z’ mod pg), Vz € Or.

Since w = 2 mod pgl) and w = 4 mod p(72), we have (v/2)7 = /2w? mod p(l) nd
(V2)" = V2w mod pg). Thus it follows that o) = o2 and T2 =0
7 7

Exzample 3.4.8. — Let m # —1 be a non-square integer, and /m > 0 be its positive
real 4-th root. Put K = Q(y/m) and L = Q(s/m,4). Then L/Q is the Galois closure of
K/Q with Galois group G = Gal(L/Q) = (0, 7)/(c* = 72 = 1,707 = 0~ !), where o and
T are defined by

A rational prime p is unramified in L/Q if and only if p t 2m. Let p be such a prime and

w)

B is a prime of Of, above p. Assume that op = ( w) =7 Then we have

pOL = P1P2 P3Py,
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where B; = o'~ }(B) for i = 1,---,4, and each 3; has degree 2 over p. Moreover, the
decomposition groups of B, is

(1) for i =1,3;

D(Bilp) = {<027-> for ¢+ = 2,4.

Put p; = B; N Ok. Since K = LY with H = (r), both p; and p3 have degree 1 over p,
and P (resp. Ps) are the unique prime of Of, above py (resp. ps). In particular, p; # ps.
As HND(P;|p) = {1} for i = 2,4, we see that ps and py are both degree 2. For degree
reasons, we have necessarily po = py4. Actually, the equality po = ps can also be proved
using the fact that B2 and P4 are conjugate under the action of H.

3.5. Prime decompositions in cyclotomic fields

Let K = Q((y) for some integer N > 3.
Proposition 3.5.1. — A rational prime [ is ramified in Q({n) if and only if l|N.

Proof. — When N = p", then the statement follows from Theorem 3.2.7 and Proposi-
tion 1.4.8. Since Q(Cw) = [ jn Q(Cup(x)), the general cases follows from Corollary 3.3.8.
O

Let [ be a prime with ged(l, N) = 1, and [1,--- ,l; be the primes of Q((x) above .
Recall that Gal(Q(¢n)/Q) = (Z/NZ)*. We denote by o; € Gal(Q({x)/Q) the Frobenius
element at [. Then o is characterized by the following property:

o(x)=2z' modl;, VI<i<gy.
Lemma 3.5.2. — Ifi+# j in (Z/NZ), then (& is not congruent to C]jv mod [y for all k.

Proof. — Consider the polynomial f(X) = X~ —1. For any N-th root of unit ¢, we have
f(¢) = N¢N—1 = N¢~1. For any prime [}, above [ of Q((x), f/(¢) is non-vanishing modulo
[. It follows that f(X) has no multiple roots in an algebraic closure of F;. Therefore, if
¢ # (5\, in Q(¢y), then (% is not congruent to ijv modulo [. O

Proposition 3.5.3. — The Frobenius element o; € Gal(Q({n)/Q) is given by o;(¢n) =
¢Y. The decomposition group of each l; is Dy = (I) C (Z/NZ)*, and the residue degree
f(]1) is the order of | in (Z/NZ)*, that is, the minimal integer f > 0 such that N|(I/ —1).

Example 3.5.4. — Consider the number field Q({31) and [ = 2. Since 2 has order 5
in (Z/317)*, it splits into 6 primes in Ok and each of them has residue degree 5. Let
H = (2) C (2/312)*, and K = Q(¢31)". Then K is the decomposition field of each
prime above 2. Thus 2 splits into 6 primes, namely p1,--- ,pg, in Ok, and each p; has
degree 1. We claim that there exists no @ € Ok such that Ox = Z[a]. Otherwise, let
f(X) € Z[X] denote the minimal polynomial of . Then by Kummer’s Theorem 3.2.3,

f(X) has 6 distinct roots in Fy. But this is impossible since #Fy = 2.
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Proposition 3.5.3 should be viewed as the reciprocity law for cyclotomic fields. One can
use it to give a proof of the quadratic reciprocity law.

Lemma 3.5.5. — Let p be an odd prime. Then Q((p) contains a unique quadratic field
K, which is
= Q(yp) ifp=1 mod 4,
Q(v/-p) ifp=3 mod 4.

Proof. — The Galois group Gal(Q((,)/Q) = (Z/pZ)* is cyclic of order p—1. It contains a
unique subgroup H of index 2. Thus Q((,) contains a unique quadratic field K. Explicitly,
if a € (Z/pZ)* denotes a generator, then H = (a?), that is H consists of the quadratic
residues of in F)'. Since p is the only prime ramified in Q(¢p), so every prime different
from p must be unramified in K. Therefore, by Theorem 3.2.5, we see that K = Q(,/p) if
p=1 mod4and K =/—pif p=3 mod 4.

O

Theorem 3.5.6 (Quadratic Reciprocity Law). — Let p,q be odd primes. Then we

have
p q (p=1)(¢=1)
— — g —1 2 s
<Q> <p> ( )

Proof. — The statement is equivalent to saying that (%*) = (%), where p* =pifp=1

mod 4, and p* = —p if p = 3 mod 4. The statement is deduced from the following
equivalences:

(f) =1&2?—p*=0 mod ¢ has solutions.
& ¢ splits in Q(\/E) by Theorem 3.2.5.

R <Q(\/ﬁ)/<@> _ (@(gp)/@>‘

! 9 Q)

& ¢ is a quadratic residue in F,,.

Here, H C Gal(Q(¢p)/Q) = (Z/pZ)* is unique subgroup of index 2.

=1




CHAPTER 4

FINITENESS THEOREMS

4.1. Finiteness of class numbers

A subset A C R” is called a lattice, if A is a free abelian subgroup of rank n containing
a R-basis of R”. For a lattice A C R™, a Z-basis of A is necessarily a R-basis of R™, and
A is discrete for the natural topology on R™. We define Vol(R™/A) as the volume of the
parallelogram spanned by a basis of A.

We have the following elementary

Lemma 4.1.1 (Minkowski). — Let A C R" be a lattice, and X C R"™ be a cen-
trally symmetric convex connected region of finite measure u(X). Assume that u(X) >
2"Vol(R™/A). Then there exists o 0 in AN X.

Proof. — Let P. be the parallelogram spanned by a Z-basis of the lattice 2A so that
wu(P:) = Vol(R"/2A) = 2"Vol(R"/A).
Note that R"™ = Uyeap (A + Pe), hence
w(X) = 3 w((r+ PN X)
A€2A
by the additivity of Lebesgue measure. As p is invariant under translation, we have
p(AN+P)NX)=p((=\+X)NP.).

As p(X) > p(P.), there exists two A1, Ay € 2A such that (—=\1 + X) N (=A2 + X) # 0
(otherwise one would have pu(X) < u(P,)). Let ,y € X such that —\; + 2 = —Xa +y, it
follows that ' —y € 2A. Since X is symmetric and convex, one gets o = “5¥ € ANX. [

Let K/Q be a number field of degree n = [K : Q. Denote by o1, ,0,, : K — R the
real embeddings of K, and oy, 41,0742, ", Opy+2r9—1,Or +2r, : I < C be the complex
embeddings such that o, +92; = &, ,4+2i—1 and n = r; + 2ry. Consider another embedding

MK —R'xC?x=R"
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sending x to ((0;(2))i1<i<ri, (0r142j())1<j<r,). Here, the identification R x C™ = R" is
given by
((Wii<i<r (Zi)1gj<rs) = (Yo ye, R(21), S(21), -+ Rz, ), S(2r,))-

Let I be a fractional ideal of O . Then [ is a free abelian group of rank n. Denote by
a1, ,ap a Z-basis of I, and we define

Disc(I) = Disc(aq, -+ ,an) = det(o;(a;))*

We see easily that the definition is independent of the choice of the basis (c;)1<i<n, and
Disc(I) = AgN(I)?, where Ak denotes the discriminant of K.

Lemma 4.1.2. — For any fractional ideal I, X(I) is a lattice of R™ with
1
VOl(R™/A(D)) = 5.7 VIAKIN(I)

Proof. — 1t is clear that A\([) is a Z-lattice of rank n. To compute Vol(R"/A(I)), we
choose a basis (a1, ,ay,) of I over Z. Denote by A(a;) € R™ the column vector given
by «;. Then we have

Vol(R"/A(I)) = |det(A(aaq), AM(a2), -+, Aawm))]-

Then we have

L, 0 0 0
0 13 0 0
(Oilaj)h<ijsn =1 o ¢ 1-i o | (Mar), Aaz), -+ AMan))
1
0o 0 0 1

It follows that
det(ai(})) = (20)7 det(Ma1), Aaz), -+, Alan)).
But Disc(I) = det(c;(c;))?, one obtains that

Vol(R"/A(T)) = 27" /|Disc(I)| = 27"2\/|Ax|N(I).

O]

Theorem 4.1.83. — Let K be a number field of degree n, Ak denote the absolute dis-
criminant of K, and r1,r9 be the integers defined above. Let I be a fractional ideal of
Ok.

(1) Given arbitrary constants c1,- - , Crj4ry > 0 with
r1+72 9
,
II > (;) |AK|PN(D),
i=1

there exists a nonzero o € I with |o;(a)| < ¢; for 1 <i <1y, and |0y, +2i()|* < ¢ry4j
for1 <5 <ro.
(2) There exists a non-zero x € I such that

4\ o n!
Ni/o(@) < (=) 2n7\AK|1/2N(I)-
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We need the following

Lemma 4.1.4. — Fort € R>, let By denote the subset of all (y1,--+ ,Yrys 21, 2ry) €

R™ x C" such that
1 ra
Sl 2y sl <t
i=1 j=1
Then the Lesbegue measure of By is
T
p(By) =2 (3)

Proof. — Put V(ry,re,t) = u(B;). We will prove the formula by double induction on r;

and ro. It is clear that V(1,0,¢) = 2t and V (0, 1,t) = (7/2)t2. Now assume the formula for

V(r1,7e,t) is true, and we deduce from it the formula of V(r1 +1,r9,t) and V (t1,t2+1,1).
Note that

t t
V(re + 1,79,1) —/ V(t1,ta,t — |y[)dy—2/ V(ry,re, t — y)dy.
¢ 0

ro ﬁ
n!

Using induction hypothesis, one gets

! r1(T\T (t_y)n r TNy
V(T1+17T27t):2/0 2 1(5) 27dy:2 1+1(§) 2

n!

tn—i—l
(n+ 1)1

For V(ry,ro + 1,t), we have similarly
Va4 10 = [ Virrt - :)du(e)
|z|<t/2

where du(z) denotes the Lesbegue measure on C. Using the polar coordinates and induc-
tion hypothesis, one gets

t/2 _ 2 )
Viri,ro 4+ 1,1) / / 2" ()" —"——pdpds.
0
An easy computation shows that V(ry,re + 1,¢) = 2™ (%)WH%. O

Proof of Theorem 4.1.3. — (1) Consider the region
W) ={r = (y,2) ER" 2R xC"||y;| < ¢; for 1 <i <y, |2|* < ppyy for 1 < j <ol

It is clear that W (c) is symmetric convex with

ritre
p(W(e)=2"x" ] e > 2”%\/\AK|N(I) = 2"Vol(R™/A(I))
=1

Statement (1) now follows easily from Minkowski’s Lemma 4.1.1.
(2) To prove (2), we consider the region

ri ro
By ={(y,2) €R™ x C2|> |uil +2) |2r, 14| <t}
i—1 j=1
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for some t € Ryq. Let

w=(nyvimawo)

By Lemmas 4.1.4 and 4.1.2, we have p(B;) > 2" x 27"2/|Ag|N(I) = 2"Vol(R"/A([)) for
t > to. By Minkowski’s Lemma 4.1.1, B;NA(I) contains a non-zero element for any ¢ > ty.
As By 41/2 is compact and A([) is discrete, By, 11/ N A(I) is finite. Therefore, there exists
a nonzero « which belong to By, 1/om N A(I) for infinitely many (hence for all) m > 1.
But By, =(\,,51 Btgt1/2m, it follows that o € By, N A(I). Then

IN()| = [Tloi(@) TT lov, 425 () ?
i=1 j=1

T1 T2
<n (Do) +2) " lorto(a)])"
=1 7j=1

4., n!
where the second step is the arithmetic-geometric mean inequality. O

Corollary 4.1.5. — For a number field K of degree n, we have

1/2 Tonj2n"
|Ag[V? > (Z)n/ R
where the sequence ay, = (%)"/2% is strictly increasing with ap, — oo and az > 1. In

particular, |Ag| > 1 if K # Q; in other words, if K is a number field in which all prime
p is unramified, then K = Q.

Proof. — Applying Theorem 4.1.3(2) to the case I = O, one see that there exists « € O
such that

4.y n!
So one obtains \/|Ag| > (F)2%; > (2)7/220 = q,,. Note that

n

=1+ T+ 22> 1
o E RS

Therefore, a,, is strictly increasing and one has \/|Ax| > as > 1. O

Corollary 4.1.6 (Hermite). — For a fized integer A, there exist only finitely many
number fields with discriminant A.

Proof. — By the previous Corollary, if K is a number field with discriminant A, then its
degree n = [K : Q] is bounded by in terms of |A|. It suffices to prove that there are
only finitely many number fields K of given discriminant A, and whose number of real
and non-real embeddings are respectively r1 and ry. We construct an algebraic integer
a € O as follows.
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— Consider first the case r; > 0, i.e. K admits real embeddings. Choose real numbers
¢; for 1 <i <ry+resuchthat cg > 1, ¢; <1 fori>1, and

r1+7r2

I1 &> Crevial

Then Theorem 4.1.3(1) implies that there exists a nonzero @ € Og such that
loi(a)] < ¢; for 1 <i <7y and |0y 42i(a)? < ¢y for 1 < j <. Since

1 < [Ngsg(a)l = low(@) [Tloi(@) TT lov 45,
i=2 j=1

it follows that |o1(c)| > 1 and |o;(a)] < 1 for o; # o01. In particular, one has

Jl(a) 7é Ui(Oz) if ag; 7& 1.

— If r; = 0, consider the centrally symmetric convex region X of C™ given by
X = {z € C2[R(=1)] < 1/2,[8(2)| < en, |52 < ¢ = 1/2,¥%2 < j < ra},

where ¢; is some constant such that u(X) > 2"27"2/|Ag|. Applying Minkowski’s
lemma 4.1.1 to X and A(Ofg), one sees that there exists nonzero o € X N A(Og).
Similarly to the previous case, one has |oj()| < 1 for o # 01,01 and |o1 ()| > 1.
But |R(o1(a))| < 1/2 by construction so that |3(o1(«))| > @ In particular, one
has o;(a) # o1(«) for all o; # o;.
In both cases, & must have degree n over Q; otherwise, by Proposition 1.2.3, there will be
some o; # o1 such that o1(a) = 0;(a) by the existence of [K : Q(«)] complex embeddings
of K extending 01g(q)- Hence, Q(a) = K. If f(X) denotes the monic minimal polynomial
of a over Q, then f(X) € Z[X] and its coefficients are clearly bounded above in terms of
some functions of ¢;. Therefore, there are only finitely many possibilities for f(X). O

Corollary 4.1.7 (Minkowski bound). — Let K be a number field of degree n and with
ro pairs of compler embeddings, Ak be the absolute discriminant of K. Then every ideal
class of K contains an integral ideal a with norm

N(a) < (i)”%\/mm.

™

Proof. — Let J be an arbitrary fractional ideal, I = J~!. Then by Theorem 4.1.3, there
exists a nonzero a € [ such that
4. r,n!
Nicsola)] < (5)* Zv/TARIN().
Put a = af~! = aJ. Then a is an integral ideal in the same ideal class as J and satisfies
the required property. ]

Theorem 4.1.8. — For any number field K, its ideal class group Cli is a finite abelian
group.

Proof. — This follows immediately from Corollary 4.1.7 and the fact that the number of
integral ideals of Ok with a given norm is finite (Proposition 3.1.2). O



48 CHAPTER 4. FINITENESS THEOREMS

Using Corollary 4.1.7, one can compute effectively the ideal class group of a given
number field.

Ezxzample 4.1.9. — Let K = Q(v/—14). Then we have n = 2, 7 = 1 and Ag = —56.
The Minkowski bound is

!
(%)T?%m = %Wm 4.765 < 5.

By Corollary 4.1.7, every ideal class of K contains an integral ideal of norm < 4. Note that
(2) = m§ with my = (2,v/~14) and N(mz) = 2. Since Ny g(a + v—14b) = a* + 14b* = 2
has no integral solutions, my is not principal. Hence, ms has order 2 in the ideal class
group. Consider the integral ideals of norm 3. We have

(3) = psp3, with p3 = (3,vV—-14+1).

Note that p2 = (9,2 + /—14) = (_Q% V—14)m,. Note also that (2) is the only integral
ideal of Ok with norm 4. It follows that p3 has order 4 in Clg, and Clx = Z/4Z.

Example 4.1.10. — For K = Q(v/2), we have n = 3, ro = 1 and Ax = —2233. The

Minkowski bound for K is 4.3l
(=)55 V3322 ~ 2.94 < 3.
/33
But the only integral ideal of O with norm 2 is (+/2). It follows that Q(+/2) has class

number 1, hence O = Z[+/2] is a principal ideal domain.

4.2. Dirichlet’s unit theorem

Let K be a number field. Denote by Ux = Oj; the group of units (i.e. invertible
elements) of Of. It is clear that an element z € Ok is a unit, if and only if [Ng ()| = 1.
The torsion subgroup of Uy, denoted by W, is the group of roots of unity contained in
K.

Lemma 4.2.1. — The group Wg is a finite cyclic group. Moreover, an element u € Ok
belongs to Wi if and only if |o;(u)|c = 1 for every complex embedding o; : K — C.

Proof. — 1t is clear that Wi is a finite group, since K/Q is a finite extension. If Wg
were not cyclic, there would exist a prime p such that the p-torsion of Wy is isomorphic
to (Z/pZ)" for some r > 2. But this is impossible since 2P = 1 has at most p solutions
in K. It is clear that |o;(u)|c = 1 for u € Wk and any o; : K — C. Conversely, assume
u € Ok is an element with |o;(u)| = 1 for all complex embeddings o;. Let f(X) € Z[X]
denote the monic minimal polynomial of u. Then the coefficients of z* in f(X) is bounded
by (7). Denote by S the finite subset of Z[X] consisting of polynomials of degree n and
such that the coefficients of X* is bounded by (7:) Then the roots of some polynomial in
S form a finite set. For all n € Z, u"™ satisfies the same condition, thus u" is a root of some
polynomial in §. There exist integers m > n with m # n and v™ = «™, that is ™" = 1.

O

The main result of this section is the following
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Theorem 4.2.2 (Dirichlet’s Unit Theorem). — Let K be a number field of degree n
with r1 real embeddings and ro pairs of non-real complex embeddings. Then there ezists a
free abelian group Vi of rank r1 + ro — 1 such that Ux = Wi X Vi.

Note that W is canonically determined by K, but Vi is not. A Z-basis of Vi is usually
called a system of fundamental units of K. If {1, -+ ,nr,+r,—1} is such a basis, then every
u € Uk writes uniquely as

u=wny'--- 77?1’“};;2__11, with w € Wk, a; € Z.
Proof. — Let o1, -+, 0., denote the real embeddings of K, and o 4,0, 4; with 1 < j <
rg be the non-real embeddings. Let A : K — R™ x C" be the Minkowski embedding given
by = — (0i(x))1<i<r,+r,- Then the image of Ok is a lattice in R™ x C", and A(Ox\{0})
is contained in R*™ x C*7"2. Define the map ¢ : Ux — R™ "2 as the composite of the
inclusion

Uk C Op\{0} 2 RX™ x C*r2
with the logarithmic map
Log : R*™ x C*" — R = R™ x R™
given by

(yla'” s Yres R1y 7Z’r‘2) — (log ’ZJIL 710g’y7‘1|7210g‘zl|7“' 7210g’27’2’)-

Then ¢ is homomorphism of abelian groups. By Lemma 4.2.1, the kernel of ¢ is Wi, and
the image of ¢ is contained in the hyperplane H C R™ "2 defined by Z;l?” z; = 0 since

T1 T2
D “logloi(u)| + 2 log oy, 1j(u)| = log [N q(u)| =0, Vu € Ug.
i=1 j=1

We will prove that ¢(Ug) is actually a full lattice in H, hence of rank 71 4+ 7o — 1. Then
if V¢ is the image of a section of the quotient Ux — ¢(Uk ), we have Ux = Wy x V. If
r1 4+ ro = 1, the statement is trivial. Thus we assume that ri + ro > 1.

First, we show that ¢(Uk) is a discrete subgroup in H. For any § € R, let Bs denote the
subset consisting of (y,z) € R™ x C"2 such that |y;|, |2;]*> < €° for all 4,j, and Bj be the
closure of Bs. Assume 6 > 0, and put Cs = Bs\B_s. Since A\(Of) is discrete in R™ x C"2,
AMOk) N Cy is a finite set. Thus for sufficiently small § > 0, we have

MOk) N Cs = MNOk) N Co = A(Wk).

We fix such a ¢, and put Ds = {x € R"""2||z;| < 6}. Then £(Uk) N Dy is contained in the
image of A\(Ox) N Cs under the map Log, hence {(Ux) N Ds C ¢(Wg) = {0}. This proves
the discreteness of £(Ug) in R™ 72 and hence in H.

To finish the proof, it remains to show that ¢(Uk) has rank r1 4+ 7o — 1. We need the
following

Lemma 4.2.3. — For each integer k with 1 < k < ri + 79, there exists up € Uk such
that |og(ug)| > 1 and |o;(ug)| < 1 for all i # k.
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Proof. — We fix a k as in the statement, and a constant A > (%)’”2|AK]1/2. Let
€1y yCry4ry, > 0 be such that ¢; < 1 for all ¢ # k and ¢, = A/ H#k ¢;. By Theo-
rem 4.1.3, there exists a non-zero a; € Ok such that |o;(a1)| < ¢; for all 1 < i < r; and
loi(a1)|? < ¢; for ri +1 < i < 7y +7r9. Put cgl) = |oi(a1)] for i # k and 1 < i < rq,
cz(l) = |oi(a1)|? for i # k and 1 +1 < i < 71 + 7o, and cg) = A/ Hi#k cz(l). Replacing
¢; by cgl) and applying Theorem 4.1.3 again, one gets a nonzero as € O such that
|oi(az)| < |oi(ay)| for i # k and

T1 T2 14712

Niesglaz) = [ loi(az)| [ lomsa)l® < ] iV = 4

i=1 j=1 i=1
Repeating this process, one gets a sequence aj,ag,- - ,an, -, such that |o;(ant1)| <
loi(an)| for all i # k and [Ng/g(an)| < A. But there exist only finitely many integral
ideals of O with norm strictly less than A. Therefore, there are integers m > n such
that (an,) = (ayn). Then ug = a,,/a, satisfies the requirement of the Lemma.

O

We come back to the proof of Theorem 4.2.2 as follows. Let ug with 1 < k < ry 4+ 7o
be as in the Lemma, and view ¢(u) € R™ "2 as a column vector. Then the entries on the
main diagonal of the (1 + r2) X (r1 + r2)-matrix

(E(ul)’ T 7€(u7”1+7°2))

are positive, and all entries off the main diagonal are negative. Then it follows from the
following elementary Lemma that this matrix has rank r{ + ro — 1. O

Lemma 4.2.4. — Let A = (ai;)i<ij<n be an nxn real matriz. Assume that Y ;" | a;; =
0 for all 3, a;; > 0 for all i and a; j; <0 if i # j. Then the rank of A ismn — 1.

Proof. — Tt suffices to show that the first n—1 rows of A are linearly independent. Assume
in contrary that there exist x1,--- ,z,—1 € R not all equal to 0 such that Z?;ll zia;; =0
for all 1 < 5 < n. Putting j = n, we see that the z;’s can not be all positive or all negative.
Let 1 < jo < n —1 be such that z;, = maxi<j<p—1{z;} > 0. Then one has

n—1
0= Zitijo=Tjo Y aijo+ I (i — zjp)ai; >0,
7 =1

i#jo
which is absurd.



CHAPTER 5

BINARY QUADRATIC FORMS AND CLASS NUMBER

In this chapter, we will discuss an interesting relation between the ideal class group and
integral binary quadratic forms. These results are very classical, and go back to Gauss.

5.1. Binary quadratic forms

Definition 5.1.1. — An (integral) binary quadratic form is a homogenous polynomial of
the form F(xz,y) = az?+bry+cy? with a,b,c € Z. We say F is primitive if ged(a, b, c) = 1.
The discriminant of F' is defined as

d =% — dac.

An immediate remark is that, a binary quadratic form F' can be written as a product of
linear functions with rational coefficients if and only if d is a square integer. From now on,
we assume that the discriminants of all binary quadratic forms involved are not square
integers.

We say that an integral binary quadratic form F'(z,y) is

— indefinite if F(x,y) takes both positive and negative values, or equivalently its dis-
criminant d > 0;

— positive definite if F'(z,y) > 0 for all (z,y) # 0, or equivalently its discriminant d < 0
and the coefficient of 22 is postive.

Definition 5.1.2. — We say two binary forms F'(z,y) and G(z,y) are equivalent if there
exists v = (Z f)) € SLa(Z) such that G(z,y) = F(rz + sy, uz + vy).

a b/2
b/2
matrix associated with F'. Then a binary quadratic form G is equivalent to F' if and only if
there exists a v € SLy(Z) such that 4'Qy is the matrix associated to G. As d = —4 det(Q),
equivalent binary quadratic forms have the same discriminant.

It is also clear that if F' and G are equivalent binary quadratic forms, then the number
of solutions to F(z,y) = n is the same as G(z,y) = n for any integer n.

For a binary quadratic form F(z,y) = ax® + bry + cy?, we call Q = the
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We are interested in classifying binary quadratic forms up to equivalent classes.

Lemma 5.1.3. — Every binary quadratic form is equivalent to a form ax® + bxy + cy?
with

bl < la] < el
Proof. — Let a be the integer such that F(z,y) = a has integral solutions and |a| is
minimal. Let r,s € Z such that F(r,s) = a. Then ged(r,s) = 1; otherwise one has
F(r/q,5/q) = a/q* with ¢ = ged(r, s), which contradicts with the minimality of |a|. Then
there exist u,v € Z such that rv —us =1, and

F(rz +uy, sz 4+ vy) = az® + by + y*  for some V', € Z.
Note that
a(z + hy)? + 0 (z + hy)y + dy* = ax® + (V' + 2ah)zy + (ah® + V' h 4 )y?

Then one can choose h € Z such that [0/ + 2ah| < |a|. Put b = () + 2ah) and ¢ =
ah? +V'h+ . Then |c| > |a| by the minimality of |a|.

O
Theorem 5.1.4. — For a fixed non-square integer d, there exists only finite equivalent
classes of binary quadratic forms with discriminant d.
Proof. — By the previous lemma, every equivalent class of binary quadratic forms of

discriminant d contains a representative of the form
az® + bry + cy®,  with d = b? — 4ac and |b] < |a| < |c].

We have the following two cases:
— If d > 0, then it follows from |ac| > b? = d + 4ac > 4ac that ac < 0. Hence, one has

Vd

d > 4|ac| > 4%, ie. a< -

Once a is fixed, there are only finitely many possible choices for b as |b| < |a|, hence
for ¢ = (b — d) /4a.
— If d < 0, then one has

d
|d| = 4ac — b* > 4a® — a® = 3d%, ie. |a| < |3‘
O
Theorem 5.1.5. — Every positive definite equivalent class of primitive binary quadratic

forms contains a unique form ax® + bxy + cy® with

bl <a<c andb>0if|bl|=a ora=c.

Remark 5.1.6. — A positive definite binary quadratic form of the form in the Theorem
is called reduced.
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Proof. — We have already seen in Lemma 5.1.3 that any binary quadratic form is equiv-
alent to a form F(z,y) with |[b] < a < c¢. Such a form is already reduced unless b = —a
or a = c and b < 0. In the these cases, we make the following substitutions to make F
reduced:

F(z,y) = ax® — axy + cy* = F(z +y,y) = az’ + azy + cy?;
F(z,y) = az? + bry + ay®* = F(—y,z) = az’® — bry + ay®.

We verify now that any two reduced primitive binary forms can not be equivalent. Let
F(z,y) = az® + bxy + cy? be a reduced form. Then we claim that

(5.1.6.1) F(z,y) > (a4 ¢ — |b|) min{z?,y?}, Vaz,y € Z.
Indeed, without loss of generality, we may assume that |z| > |y|. Then
F(z,y) = (a—[b)|zlly| + cy* = (a +c — [b])y*.

In particular, one has F(z,y) > a + ¢ — |b] if zy # 0, and the equality holds only if
(z,y) = £(1, —sign(b)). The smallest three integers represented by F' are

(5.1.6.2) a<c<a+c—lbl.

Assume now G(z,y) is another reduced form equivalent to F'(x,y). Then one has G(z,y) =
ax?® + Vxy + 'y?. We distinguish several cases:

— If a = ¢ = b > 0, then the equality in —d = 4ac’ — b"? > 4a® — b? holds. Therefore,
¢ =a and |V/| = a. Since G is also reduced, then v/ = qa, i.e. F =G.

—If a = ¢ > b > 0, then one has either ¢ = a or ¢ = 2a —b. But F(z,y) = a has
4 solutions, namely (+1,0) and (0,+1). It follows that ¢’ = 2a — b is impossible,
because otherwise G(z,y) = a would have only 2 solutions. It follows also from
b = Vdac+ d that b=10".

— If ¢ > a=b|, then b = a and ¢ = a+c— |b| is the second smallest integer represented
by n. Thus one have ¢ = c or ¢ = a. But the second case can not be true
because of the discussions on the previous two cases. It follows that ¢/ = ¢ and hence
b =+4dacd +d=b.

— If ¢ > a > |b], then one has ¢ > a > |b| by applying the previous discussion to G.
Since the inequalities in (5.1.6.2) are strict, we see that ¢/ = ¢ and |b'| = |b|. Using
the fact that the only solutions to F'(z,y) = a (resp. to F'(z,y) = ¢) are (£1,0) (resp.
(0,41)), one checks easily that az? + bxy + cy? is not equivalent to az? — bry + cy?.
Therefore, one concludes that ¥’ = b.

O

Using Theorem 5.1.5, it is easy to list all the equivalent classes of positive definite
binary quadratic forms with given discriminant d < 0. We have the following table for
small —d > 0 (note that one has always d = 0,3 mod 4):
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values of d | reduced binary forms with discriminant d
-3 2+ xy + 2
4 $2 T yQ
-7 2?2 + xy + 2y°
-8 2% 4 292
-11 x? + xy + 3y?
-12 2?2 + 3y°
-20 22 + 5y?,22% + 22 + 3y°
-23 22 + xy + 6y2, 22° £ zy + 397,
-52 2?2 + 13y?%, 222 + 2xy + Ty?
-56 22 + 1492, 222 + Ty?, 327 £+ 2xy + 5y?

5.2. Representation of integers by binary quadratic forms

Definition 5.2.1. — We say that an integer n is represented by a binary quadratic form
F(z,y), if F(x,y) = n has solutions in Z2, and n is properly represented by F(x,y), if one
can choose (z,y) so that ged(z,y) = 1.

Lemma 5.2.2. — A binary quadratic form F(x,y) properly represents an integer n if
and only if F(x,y) is equivalent to the form nz? + xy + y? for some V', c € 7.

Proof. — The condition is clearly sufficient. Suppose that F'(u,v) = n with ged(u,v) = 1.
Then one chooses r, s € Z such that us —rv = 1. Then F(z,y) is equivalent to

F(ux + ry,ve + sy) = nz® + (2aur + bus + bro + 2cvs)zy + F(r, s)y?.
0

Proposition 5.2.3. — Let n # 0 and d be integers. Then the following are equivalent:

1. There exists a binary quadratic form of discriminant d that properly represents n.
2. d is square modulo 4n.

Proof. — If F is a binary quadratic form that properly represents n, then F' is equivalent
to na? + bxy + cy? for some b, ¢ € Z by the previous Lemma. Hence, one gets d = b% — 4nc
and d = b*> mod 4n.

Conversely, suppose that d = b*> mod 4n so d = b?> — 4nc for some ¢ € Z. Then the
binary form F(z,y) = na? + bry + cy? has discriminant d and represents n. O

Corollary 5.2.4. — Let n be an integer represented by a binary quadratic form with
discriminant d, and p be a prime with (%) = —1. Then the exponent of p in n is even.

Proof. — Indeed, if the exponent of p in n is odd, d would be a quadratic residue modulo
p by the Proposition. ]

Ezxample 5.2.5. — When n = 1,2, 3, the only positive definite reduced form of discrim-
inant d = —4n is 22 + ny?. Thus by Proposition 5.2.3, an integer m can be properly
represented by 22 4 ny? if and only if —4n is a square modulo 4m, i.e. —n is a square
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modulo m. In particular, if p is a prime coprime with n with (_Tf) =1, then it is repre-
sented by 22 4+ ny?. In view of NQ(H)/Q(aﬁ ++v/—ny) = 2%+ ny? and the multiplicativity
of norms, any product of such primes is represented by x? 4+ ny?. By quadratic reciprocity
law, we have

-1
<p>:—1<:>p=3 mod 4

-2
(p> =—1<p=57 mod38

<_3>:—1<:>p52 mod 3
p

After checking the representability of m = 2* by hand, one obtains by Corollary 5.2.4 the
following

m is represented by | iff the following primes have even exponent in m
22 + 92 p=3 mod4
2+ 2y° p=>5,7 mod 8
% + 3y? p=2 mod 3

Example 5.2.6. — A positive integer n is represented by x? + 5y if and only if

(1) any prime p = 11,13,17,19 mod 20 appears in n with even exponent;
(2) the total number of prime divisors p = 2,3,7 mod 20 (counted with multiplicity) is
even.

Note that there are no restrictions on the number of primes p =1,5,9 mod 20.
First, there are only two binary quadratic forms with discriminant -20, namely

flz,y) =22 +5y°, gz, y) = 22% + 22y + 3y°.

By Proposition 5.2.3, a prime p coprime to —20 is represented by f or g if and only if
(_—5) = 1. By quadratic reciprocity law, we have

P
-5\ _J1 p=1,3,7,9 mod 20
p) |-1 p=11,13,17,19 mod 20.
Then the first statement follows from Corollary 5.2.4. By checking modulo 4, we see easily
that primes p = 1,9 mod 20 can not be represented by g, thus they must be represented
by f; on the other hand, primes p = 3,7 mod 20 can not be represented by f, thus they
are represented by g. One notes also that 2 is presented by g not by f, and 5 is represented

by f by not by g. Therefore, any power of primes p = 1,5,9 mod 20 can appear in n.
Finally, statement (2) comes from the magical identity

(222 + 2zy + 3y°) (222 + 22w + 3w?) = (222 + zy + yz + 3yw)? + 5(zw — y2)2.
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What does the magical identity come from? Actually, if mg = (2,14 +1/—5) denotes the
unique prime of K = Q(v/—5) above 2, then

N(my) N(mg) -
Now the magical formula follows from
(22 4+ y 4+ V=59) (22 + w — vV—bw) = 2[(22z + yz + zw + 3yw) + (yz — zw)v/—5]

by taking norms.

222 + 2y + 3y° =

5.3. Ideal class groups and binary quadratic forms

Let K = Q(V/d) be a quadratic field with discriminant d. Denote by z + & the non-
trivial automorphism of K/Q. We will consider a slightly different ideal class group in the
real quadratic case.

Definition 5.3.1. —  — We say an element x € K is totally positive if o(x) > 0 for
all real embedding o of K (so that the condition is empty if K is imaginary).
— Let Zx be the group of fractional ideals of K. We denote by P}; C Ik the subgroup
consisting of fractional ideals generated by a totally positive element. We define the
strict (or narrow) ideal class group of K as

Clf = Ik /Py

If K is imaginary quadratic, Cl;g is the usual ideal class group Clg . If K is real quadratic,
Clk is a quotient of Cl} with kernel Pg /Pjt.(V

Definition 5.3.2. — Let a1, as be two Q-linearly independent elements of K. We say
that (a1, a9) is positively oriented if

det (al a?)
a1 2
Vd

Note that exactly one of pairs (aq, az) and (ae, aq) is positively oriented. So the notion
of positive orientation gives a way to choose the order of any two linearly independent
elements in K.

Let I be a fractional ideal of K, and (w1,ws) be a positively oriently basis of I over Z.
We put

> 0.

Ng/g(rwr + ywa)
N(I)
Lemma 5.3.3. — The quadratic form f,, ., has coefficients in Z and has discriminant

d, and it is positive definite if K is imaginary quadratic. Moreover, the equivalent class
of furws depends only on the class of I in Cl;r(.

Jonwn (2, y) =

M Actually, Px /P is trivial if K has a unit of norm —1, and it is of order 2 otherwise.
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Proof. — 1t is clear that f., »(z,y) € Z for any z,y € Z. The coefficients of z2, zy
and y? are respectively given by fu, w,(1,0), furws(1,1) = furws(1,0) = fiuy . (0,1) and
fur w2 (0,1). This shows that f,, «, is integral. A direct computation also shows that the
discriminant of f,, ., is given by

(wla)z — (7)1&)2)2 . DiSC(wl,UJQ)

N(I)2 T N(I)2 =d

If K is imaginary quadratic, f,, ., is clearly positive definite, since the norm of any element
in K is positive definite.

Now if (w],w)) is another positively oriented basis of I, then there exists v € GL2(Z)
such that (w],w)) = (w1,w2)y. As both (w],w)) and (w1, ws) are positively oriented, we
have v € SLy(Z). Therefore, f.s ., is equivalent to f., «, under the action of SLy(Z). Let
J be a fractional ideal in the same class in Cl;r( as I. Then there exists a € K such that
J = I(a), where « is totally positive if K is quadratic real. Then (aw;, agws) is positively
oriented basis of J, and one has fow; aws = fur,ws- ]

For an integral binary quadratic form f, let [f] denote the equivalent class of f under
the action of SLy(Z).

Theorem 5.3.4. — The above construction I «— [fu, u,] induces a bijection between the
set Cl;g and the set of equivalent classes of binary quadratic forms with discriminant d,
which are positive definite if d < 0.

Proof. — We prove first the surjectivity of the morphism. Given a binary quadratic form
f(z,y) = ax® + by + cy? with discriminant d, which is not negative definite, we have to
show that there exists a fractional ideal I and a positive oriented basis (w1, ws) of I such
that [f] = [fww.)- Up to replacing f by a form equivalent to it, we may assume that
a > 0. Let 7 denote the root of ax? — bx + ¢ = 0 such that (1,7) is positively oriented.
Consider the lattice I = Z + ZT C K. We verify that I is a fractional ideal of K. We
distinguish two cases:

1. d =0 mod 4. Then 2|b, and O = Z + Z@. It suffices to show that I is stable
under multiplication by vd. If 7 = bV yen

2a
?(1,7)2(1,7)i<_3 _§>.

a =3

2. d =1 mod 4. According to 7 = bV o take correspondingly wy = 1£Vd  Thep

2a 2
we have O = Z + Zwy and

wa(1,7) = (1,7) <15b 1__25,) .

a

As b is odd, this implies that I is stable under the multiplication by wy (hence a
fractional ideal).
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17‘2

Next, we compute N(/). Note that Disc(1,7) = det (1 7__) = d/a®. Tt follows that

N(I) = a~!. Therefore, we see easily that

Ng oz —y7)
fir= /%T = ax® + bry + ey’ = f.
Now we prove the injectivity of the morphism. Let f(z,y) and 7 be as above. Suppose
that J is a fractional ideal with positive oriented basis (w1,wsz) such that [f,, o] = [f].

We have to show that the class of J in Cl}; is the same as I = (1,7). There exists

s
V= (u v) € SL2(Z) such that

Jon o (1 + sy, uz + vy) = f(z,y).

Then up to replacing (wi,ws2) by (w],wh) = (w1,w2)y, we may assume that fu, w, = f.
Thus one gets

Ng/g(wiz + yws) = (W1 + yws ) (017 + waoy) = N(J)(az? + bxy + cy?).

Note that N /g(w1) = aN(J) > 0. Therefore, up to replacing (w1, w2) by (—w1, —w2), one
may assume that wy is totally positive. Putting (z,y) = (—7, 1), we see that if 7/ = ws /w1,

then either 7/ = 7 or 7/ = 7. Note that
/

w1 wo 1 7
det (wl w2> = Ng/g(w1) det (1 T,) :
Since (w1,ws2) and (1,7) are both positively oriented, the determinant above has the same

1

sign as that of 1

; . Thus one gets 7/ = 7, and hence J = (wq)1.
0

Remark 5.3.5. — (1) Note that d being the discriminant of a quadratic field is equivalent
to the following conditions:

— d the exponent of any odd primes in d is at most one;
—d=1 mod4ord=38,12 mod 16.

Such a d is usually called a fundamental discriminant. The discriminant of a general binary
quadratic form writes uniquely as d = f?dg, where d is a fundamental discriminant of
a quadratic field K, and f > 0 is an integer, called the conductor of d. There exists a
similar bijection between the equivalent classes of non-negative definite binary quadratic
forms with discriminant d and the strict ideal classes of the subring O = Z + fOg of Ok.

(2) Combining with Theorem 5.1.4, this theorem gives another proof of the finiteness of
the class number of a quadratic field. Actually, Theorem 5.1.5 even gives a very efficient
algorithm to compute the class number of an imaginary quadratic field.

(3) Another interesting consequence of Theorem 5.3.4 is that there exists a natural
abelian group structure on the set of equivalent classes of non-negative binary quadratic
forms with discriminant d. The multiplication law of two equivalence classes in this group
is usually called “Gauss composition law”, which was discovered by Gauss around 1800. It
is quite remarkable that, at the time of Gauss, the ideal class group for a general number
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field had not been defined yet. For a different approach to Gauss composition law using
cubes, see Bhargava’s paper [Bh04].






CHAPTER 6

DISTRIBUTION OF IDEALS AND DEDEKIND ZETA
FUNCTIONS

6.1. Distribution of ideals in a number field

Let K be a number field of degree n, and C' be an ideal class of K. Given a positive
real number ¢, we denote by N¢(t) the number of ideals I of O in the given ideal class
C with norm N(I) < t. The aim of this section is to prove the following

Theorem 6.1.1. — There exists a positive number k, which depends on K but is inde-
pendent of C', such that

Ne(t) = st + O =1/m),

Here, the error term O(tl_l/”) means that, there exists a real positive number A, depending
on K and C but independent of t, such that |Ng(t) — kt| < At"=Y™ for all t > 1.

Remark 6.1.2. — We will give later a formula for s after we define the regulator of K.

We now explain how to prove Theorem 6.1.1. First of all, instead of counting (integral)
ideals in the ideal class, we reduce the problem to counting the elements in a fractional
ideal.

Lemma 6.1.3. — Let J be a fractional ideal in the ideal class C~'. Let S; be the equiv-
alent class of x € J with norm |Ng ()| < tN(J) modulo the action of units of K. Then

a +— (a)J 7 induces a bijection between Sy with the set of integral ideals I of O in C
with N(I) < t.

Proof. — Indeed, the set S; is in natural bijection with the set of principal ideals («)
contained in J with [Ny g(a)| < ¢N(J). The multiplication by J~! induces a bijection
between such principal ideals with the set of integral integral ideals I contained in C' with
norms N(I) < t. O

In the rest of this section, we fix such a fractional ideal J as in the Lemma.
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6.1.4. The case of quadratic fields. — To illustrate the ideas of the proof, let us
consider first the case when K/Q is quadratic.
(1) Assume that K/Q is imaginary quadratic field. We fix a complex embedding

A K — C 2R

The image of J is a lattice in C. Choose a basis (a1, a2) of A(J). Then a fundamental
domain of C/A(J) is given by the parallelogram D with vertex points 3(+aq,+as). One

has
w(D) = Vol(C/A\(J \/]A IN(J
For any p > 0, denote
B,={2€C:|z| <p}.

Let n(t) denote the cardinality of A(J)N B\/m, n_(t) denote the number of a € J such

that o + D is contained in Bm, and n. (t) the number of a € J such that a + D has

non-empty intersection with B N It is clear that
n_(t) < n(t) < ng(t).

Let 0 denote the maximal length of two elements in D, then one has

() > n(B tN(J)fJ) i - M(B\/tN(J)ﬂi)
T B 76 )
Therefore, one gets
wB tN(J)) s
n(t) = +O(Vt) = t+O0(Vt)
n(D) |Axk|
Modulo the unit group Uk, we get
No(t) = #S = ———t+ O(V),
|AK!
where w denotes the cardinality of Ug. This finishes the proof of Theorem 6.1.1, with
2
K= .
w|Ak]

(2) Assume now K/Q is real quadratic. The situation is complicated by the existence
of free part of the unit group Uk . By Dirichlet’s unit theorem, one has

Ug = {£1} x &2,
where ¢ € Uk is a fundamental unit. Let
A K — R?
denote the embedding given by a +— (o01(«),02()), where 01,09 are the two real em-
beddings of K. We may assume that o1(¢) > 1. Then A(J) is a lattice in R? with

Vol(R2/J) = /|Ak|N(J). We consider the orbit of R? under the action of A\(¢)%. Then
for every yo € R2, there eX1sts n € 7 such that yoA(¢") lies in the subset

PG
o2l = Toa(e)] ~ 71

{y_(yluy2)€R2 1<
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Therefore, if we put

Doxiry = {(y1,92) € B : [yayn] < IN(J),1 < ;*ZZ: < o1(e)?),

then every element in J with norm less than ¢tN(J) is uniquely, under the action of eZ,
equivalent to an element in A(J) N Dyn(y- Therefore, by the same arguments as in the
imaginary quadratic case, we have

_ #AJ) N Denay _ (Dxery)

w wVol(R2/\(J))
where w = 2 is the cardinality of Wx = {£1}. So the problem is reduced to computing
(D)) We have

No(t) +0(V1),

(Dinry) = 4/ >0 dyidys
0<y1y1 <tN(J)
1<y1 /y2<o2(e)?

=4 e <ionen () e 2 dyydry  (letting y; = e for i = 1,2)

0<z1—22<2log(01(¢))

log(tN(J))  r2log(a1(e))
:2/ / edudv  (u= 1+ x9 and v = 21 — x2)

=—00 =0

= 4tN(J) log(o1(¢)).

So finally, one gets
_ 2log(o1(2))

Nel) == AT

where log(oy(¢)) is usually called the regulator of K.

t+O(W1),

6.1.5. A formula for the number of lattice points. — In the discussion above, we
have used an estimation for the number of lattice points contained in a bounded region
D in R? in terms of the area of D. It is reasonable to expect that, if A C R” is a lattice
and B C R" is a bounded region, then #(A N B) can be estimated in terms of the ratio
wu(B)/Vol(R"/A), once the boundary of B is “not too bad”. In order to put this in a
rigorous form, we need the following

Definition 6.1.6. — (1) Let [0,1]"~! denote the (n — 1)-dimensional unit cube. A func-
tion
foo,1" " - RrR"
is called Lipschitz, if the ratio
[f(z) = f(y)]
|z =yl

is uniformly bounded as x and y range over [0,1]""!, where | - | means the length in R"~!
or R".

(2) Let B be a bounded region in R”. We define the boundary of B as B = B — Bt
where B denotes the closure of B in R” and B™' the interior of B. We say that 0B is
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(n — 1)-Lipschitz parametrizable, if it is covered by the images of finitely many Lipschitz
functions: f:[0,1]""1 — R™.

Lemma 6.1.7 ([Ma77] Chap. 6, Lemma 2). — Let B be a bounded region in R™ such
that the boundary of B is (n — 1)-Lipschitz parametrizable, and A C R™ be a full lattice.
Then for a > 1, we have

#(ANaB) = Voiu(]gi)//&)an +O0(a" ™).

Proof. — Let L : R™ — R™ be a linear transformation such that L(A) = Z™. If B’ denotes
the image of B, then
p(B) = p(B) det(L)| = D)
Vol(R"/A)
Clearly, we have #(Z"NaB’) = #(ANaB), so the statement for (A, B) follows immediately
from that for (Z™, B’). Thus we may assume that A = Z".

Consider translates of n-cubes [0,1]” with centers at points of Z". We call simply
such a translate a unit n-cube. The number of unit n-cubes contained in aB is roughly
w(aB) = a"u(B), and the difference is controlled by the number of unit n-cubes which
intersect with the boundary d(aB).

Let us call small n-cubes the translates of [1,a~1]™ with centers at points of a=1Z". The
number of unit n-cubes intersecting with d(aB) equals to the number of small n-cubes
intersecting with 0B. Let f : [0,1]""! — 9B be a (n — 1)-Lipschitz function. Since 0B
is covered by the image of finitely many such functions, we just need to show that the
number of small n-cubes intersecting with image of f is O(a""1). Let A > 0 be such that

[f(z) = f)l < Az —yl, forall 2,y € [0,1]" .

Consider all the points = € [0,1]"~! whose coordinates are of the form z; = ﬁ for some

integer b with 0 < b < [a] — 1. Here [a] denotes the maximal integer less or equal to a.
Then there are [a]*~! such points, and we label them as z; for 1 <4 < [a]*~!. Now assume
that A is a small n-cube intersecting with the image of f. Let y = f(x) be an intersection
point. Then there exists some z; as above such that |z — z;| < /n — 1/(2a), so that

ly = fzi)] < Avn —1/(2a).

As the diameter of A is \/n/a, then there exists ¢ > 0, independent of a, such that C is
completely contained in the ball D; with center f(x;) and radius c¢/a. Clearly, all the small
cubes intersecting with Im(f) are contained in the union of the D;’s. But the volume of
each D; is of the form ¢//a™ for some ¢’ > 0 independent of a. Therefore, the volume of
the union of all D; is bounded by ¢//a™[a]"~! < ¢//a, and the number of small n-cubes
intersecting with Im(f) is bounded above by

(d/a)/a™™ = a1t
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6.1.8. Start of the proof of Theorem 6.1.1. — We now turn to the proof of The-
orem 6.1.1 in the general case. Let o1,---,0,, denote the real embeddings of K, and
Opi4j,0p44 for 1 < j <o denote the non-real embeddings. We have a Minkowski embed-
ding

A K >R xC?2R",

under which the image of J is lattice such that (Lemma 4.1.2)
(6.1.8.1) Vol(R"/A(J)) = 272 /|Ak|N(J).

Let J be the fixed fractional ideal in C~!. For any real number ¢ > 0, put

r1 9
Xe={(y,2) € R x € : [T il [ ] lzr s < EN(I)}.
=1 j=1
The elements of J with norm less than ¢tN(J) are exactly those in A(J) N X;. Note that
A(J\{0}) lies in (R*)™ x (C*)"2. We put

X = X; N (R¥™ x C¥72),

The unit group Uk acts naturally on X; and J via multiplication, and we need to count
the number of orbits of A\(J) N X} modulo the action of Uk. For this, we need to find a
fundamental domain of X; for the action of Ug. Choose a fundamental system of units
UL, Up 4rg—1 SO that

ri+reo—1

VA
Ux =Wi x [ o,
=1

where Wi is the subgroup of roots of unity in K. Consider the following commutative
diagram

RXT1 5 CXir2 Log Rritr2
i j J
¢
Uk H
where Log is given by
(ya Z) = (lOg |y1|a T 710g |y7“1‘7 210g |21|7 e a210g |Z7’2|)a

and H is the hyperplane of R™ "2 defined by Z’;J{” z; = 0. In the proof of Dirichlet’s
unit theorem 4.2.2, we have seen that ¢ is a group homomorphism with kernel W, and
its image is a full lattice in H generated by #(u1),- - ,€(tr,+r,—1). Note that the image
of X; under Log is the region X;"'°% defined by ST gy < log(tN(J)), and ¢(Uk) acts
naturally by translation on X;"'°%. Put

1

(6.1.8.2) n—
r1+ 7o

(1,---,1) € R"H72,
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Then (n,f(u1),-- -, €(Up,4ry—1)) form a basis of R™ "2 and a fundamental domain for
Xt*’log under the action of ¢(Uk) is given by
D = {ton + t1£(ur) + - + try gy 1Ly 1y 1)
ty € (—o0,log(tN(J))], t; € [0,1),i =1,--- ,r1 + 19 — 1}.

Let Dy denote the inverse image of Diog under Log. Note that D; C X;. Then we have
the following

Lemma 6.1.9. — Let Vi denote the subgroup H;:l'm_l ul-Z of Ux. Then Dy is a funda-
mental domain for X; under the action of the subgroup Vi.

Proof. — Let y € X; be a point. Since D)8 is a fundamental domain for X' under
the action of /(Ux) = £(Vi), there exist a unique u € Vi such that Log(y) — £(u) € D\°®.
Then y’ = y/u € D, by definition. O

Note that D; still keeps the action of Wyg. It follows immediately from the Lemma
above that, the number of orbits of A(J) N X} under Uk is the same as the number of
orbits of A(J) N Dy under the action of Wi . In summary, the number of integral ideals in
the ideal class C' with norm less or equal to t is given by

AJ)ND
Nc(t) _ #( ( ) t).
w
Note that D; = t'/"D; and the boundary of D; is clearly (n — 1)-Lipschitz. Hence by
Lemma 6.1.7, we have

(D)
wVol(R™/A\(J))

To compute (D7), we need to introduce the following

(6.1.9.1) No(t) = t+ Ot =1/,

Definition 6.1.10. — Let (uy, -+ ,Up +ry,—1) be a fundamental system of the unit group
Uk, and n € R" be the vector defined in (6.1.8.2). We define the regulator of K as

R = |det(n, l(ur), -+, £(tUry4ry—1))]-

Note that, in the definition of Ry, one can replace n by any vector in R™ "2 whose
components sum up to 1.

Lemma 6.1.11. — We have
(D7) = 2" 72 RN ().
Proof. — Let dy; for 1 <i <y (vesp. ju,; for 1 < j < rg) denote the Lebesgue measure

on R (resp. on C). Using polar coordinates z; = pjewj, then we have p., = p;dp;df;. Tt
follows that

M(Dl):/ dyy - - dyr,p1 - prydpy - - dpp,dby - - 0y,
Dy
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By definition, if we put z; = log|y;| for 1 < ¢ <y and z, +; = 2log|z;| = 2log p;, then
D; is defined by x = (21, , Ty 4r0) € Dllog. Changing the variables to x;’s, one gets

147
w(Dyp) = 2" 7" / e2it1 Ty - ATy, 4y

D)8
If to,t1, -+ ,tr 4rp,—1 are new variables defined by
(@1, 22, Ty )t = (L), Uy —1)) (B0s t1 sty —1)s
where (21, , Ty +r,)" means the column vector in R™%"2 then DllOg is defined by

—o00 <tg <log(N(J)) and O0<t;<1, i=1,---,r1+ra—1.

Note also Z;;J{m x; = tp, since the components of each f(u;) sum up to 0. Then by
Jacobian’s rule, we have

dml - dx?"l'i‘rQ = RK dtodtl e dtr1+r2—17

and hence

log(N(J)) ri+re—1 .1
(D) = 2" "2 Ry / evdty ] / dt;
i=1 70

—00

= 9" "2 RN ()

We can now prove a more precise form of Theorem 6.1.1:

Theorem 6.1.12. — Let K be a number field of degree n with r1 real embeddings and ro
non-real embeddings. For a fixed ideal class C of K and a real number t > 0, let No(t)
denote the number of integral ideals of K with norms less than t. Then we have

_ om(2m)"Rg

Nel) == JIan

t+ 0@ =1m),

where w is the number of roots of unity in K and Ag is the discriminant of K.

Proof. — Indeed, this follows immediately from (6.1.9.1), Lemma 6.1.11 and (6.1.8.1). [
We have the following immediate

Corollary 6.1.13. — Under the notation of the Theorem, let h denote the class number

of K. Then the number of integral ideals of K with norm less than t is given by

_ 2"(2m)"?Rih

N ) w\/|Ak]|

t+ O(tl_l/n).
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2. Residue formula of Dedekind Zeta functions

Recall that the Riemann zeta function is defined by
=1 1
B SR |
n=1 P

which absolutely converges for R(s) > 1.

Lemma 6.2.1. — The function ((s) can be analytically extended to a meromorphic func-
tion in s on RN(s) > 0 with a simple pole at s = 1 with residue 1.

Proof. — Note that

i 1
/1 t%dt = P for R(s) > 1

Then we have

)= i = Z/ G~

= Z / / ——daxdt

R —
—ZS ; de
n=1

If 0 denotes the real part of s, then

n+1 * dz
|Z/ y<||/ xm: ., for o >0.

Thus the sum in | - | on the left hand side defines a holomorphic function in R(s) > 0.
Thus, one may define the analytic continuation of {(s) as

(6.2.1.1) C(s) = Hntl-ow

dz, for R(s) >0

O

Proposition 6.2.2. — Let f(s) = Y 0", % be a Dirichlet series, which converges for

R(s) sufficiently large. Let Sy =Y -, an for any t > 0. Assume that there exists some
k€ C and § with 0 < § <1 such that

Sy =kt +O(t'™%)  when t — +oo.

Then f(s) can be analytically extended to a meromorphic function on R(s) > 1 —§ with
at most a simple pole at s = 1 with residue k.
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Proof. — Put

b :
g(s) = f(s) — k((s) = n—z, with b, = a,, — k.
n=1
Then if Sj = 3, ., bn, then S = O(t'~ 9). By Lemma 6.2.1, x((s) can be analytically
extended to a meromorphic function on R(s ) > 0 with a simple pole at s = 1 with
residue k. Therefore, the Proposition will be proved if one shows that g(s) has an analytic
continuation to a holomorphic function on §R(s) >1—4. For R(s) >> 0, we have

S/ ;Z +o00 S;Z
o=y BTE =5 RS Ty

1
—Z E_m)

n+1
= Z s / st™57Ldt.
n=1 n

Let C' > 0 be such that |S/,| < Cn'~%, and o = R(s). Then we have

~+00 n+1 0 n+1
s st Ldt| < Cls nl=o o1t
n
n=1 n

n=1 n
+o0 n+1

= (s Z/ t=77%dt  (since nt70 < ¢179)
n=1“"

1
—C|S|m fOI‘G'>1—6.

This shows that g(s) can be extended to a holomorphic function on R(s) > 1 — 4.

Now let K be a number field of degree n.

Lemma 6.2.3. — The series
=D N
aCOg

absolutely converges for R(s) > 1, where a runs through all the integral ideals of Ok.
Moreover, we have the Fuler product

(6.2.3.1) k(s) =] 1_Nl(p)s for R(s) > 1
p

where p runs through all non-zero prime ideals of Ok .

Proof. — Write (i (s) = Y21 %, where ay, is the number of integral ideals of O with
norm equal to n. If n = [[;_, pi* is the prime factorization of n, then a,, < [K : Q] )", e; <

K : Q]log,n, since there are at most [K : Qle; primes with norm equal to p%. In
[ g2 1, p q P
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particular, one has a, = O(n¢) for any positive € > 0. Therefore, for any € > 0, there
exists a C > 0 such that

|Cre (s ’<Z| s|— Z nR(s
which uniformly absolutely converges for (s) > 1+ 26. Next, we note that

1 1
'1;11_N<m—s'§H1_N<p>—m<s>

< I = wyer = <R,

which proves the absolute convergence of the Euler product. Then the equality (6.2.3.1)
is an immediate consequence of the unique factorization law of ideals in Ok. O

The complex analytic function (i (s) is usually called the Dedekind zeta function of K.

Theorem 6.2.4. — The function (x(s) has a meromorphic continuation to R(s) > 1—1
with a simple pole at s = 1 with residue

M (2m)" Rich

WA/ |AK| ’
where the meanings of r1,r9, Ri, h,w, Ag are the same as in Corollary 6.1.183.

Proof. — Write (g (s) = 20 aun~*, where a, is the number of integral ideals of Ok

n=1
with norm exactly equal to n. Then S; =), _, ay, equals to the number of integral ideals
of Ok with norm less than or equal to t. Now the Theorem follows immediately from

Proposition 6.2.2 and Corollary 6.1.13. O
Let f(s) and g¢(s) be complex valued functions in a neighborhood of 1. We write

f(s) ~g(s) when s — 17, if the limit of J; ((j)) when s approaches 1 along the real axis from
the right.

Corollary 6.2.5. — Let K be a number field. Then we have

1 1 1
E ~ log when s — 17
N s Z N s -1 ’
p (b p,deg(p)=1 () °

where p runs through all the prime ideals of Ok in the first summation, and through the
primes of degree 1 in the second.

Proof. — By the Euler product of (x(s), we have

log (x (s) = Z —log(1 - Z Z nN

P p n=1

1 1 1
= Z Np)+ Z W_'_ZnN(p)”s’ for R(s) > 1.

p,deg(p)=1 p,deg(p
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By Theorem 6.2.4, we have log (i (s) ~ log ﬁ when s — 1. Therefore, to finish the proof,
it suffices to show that the second and the third terms are bounded when s — 17. Let

o = R(s). Then
1 K 1
Y s T sy o

p,deg(p)>2 n>1

which is convergent for o > 1/2, hence bounded when s — 1. Similarly, one has

1 1
2 NG ST NG mGr -1

pn>2
< 9K : @]Zpg(pj_l)
<[K:Q] an’(ni—l)
n>2

which is convergent when o > 1/2. O






CHAPTER 7

DIRICHLET L-FUNCTIONS AND ARITHMETIC
APPLICATIONS

A good reference for this chapter is [Wa96, Chap. 3, 4].

7.1. Dirichlet characters

Let G be a finite abelian group. Recall that a character of G is a group homomorphism
x:G — C*.

We say x is trivial, if x(¢g) = 1 for all g € G. If x; and y2 are two characters, we define
their product by the formula x1x2(9) = x1(9)x2(g9). The set of characters of G form an

~

abelian group, which we denote by G.
Lemma 7.1.1. — There exists a non-canonical isomorphism G = G.

Proof. — Since every finite abelian group is a direct sum of cyclic groups, we may assume
that G = Z/nZ. Then a character x of G is determined by its value at 1 € Z/nZ, which

is necessarily an n-th root of unity, and vice versa. Thus G is canonically isomorphic to
the group of n-th roots of unity, which is isomorphic to Z/nZ. O

A group homomorphism f : G; — G5 induces a natural map f : Gy — Gy given by
X xof.
Corollary 7.1.2. — If 0 - G1 — G — Go — 0 is an exact sequence of finite abelian
groups, then the induced sequence 0 — Gy — G — G1 — 0 is also exact.

Proof. — Let f denote the injection G; — G. It is easy to see that Ker(f) = @2, S0
that only the surjectivity of ]?: G — @1 is non-trivial. By the Lemma, G / @2 has the
same cardinality as @1. It follows that ]?induces an isomorphism G / @2 = @1, that is f
is surjective.

O]

For any finite abelian group G, there is a natural morphism G — G sending g € G to
the character x — x(g) on G.
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Proposition 7.1.3. — The canonical morphism G — G is an isomorphism.

Proof. — Since G and G have the same cardinality. It suffices to show that G — G is
injective, that is, for any non-trivial g € G, we have to construct a x € G such that
X(g9) # 1. Let H C G be the subgroup generated by g. Then H # 1. By Corollary 7.1.2,
there exists y € G with non-trivial image in H. Then x(g) # 1 since g is a generator of
H.

O

Proposition 7.1.4. — Let G be a finite abelian group. We have
1. deg x(g) = 0 for all non-trivial x € (A;,
2. eré x(g) =0 forall g #1 in G.

Proof. — We just prove statement 1, the second follows from the first by Proposition 7.1.3.
Since x € G is non-trivial, there exists h € G such that y(h) # 1. Then

X)) x(9) =D xlgh) = x(9)-

geG geG geG
]

7.1.5. Dirichlet characters. — A Dirichlet character is a character y of the group
(Z/NZ)* for some integer N > 1. Note that for N|M, x induces a character of (Z/MZ)*
by the natural surjection (Z/MZ)* — (Z/NZ)*. We say x : (Z/NZ)* — C* is primitive,
if it is not induced by any characters of (Z/dZ)* for d|N and d # N; in that case, we
say x has conductor N, and write f, = N. We say x is even if x(—1) = 1 and odd if
x(—1)=—1.

Many times, it is convenient to regard a Dirichlet character x : (Z/NZ)* — C* as a
function Z — C by setting x(a) = 0 if ged(a, fy) # 1. Note that x(nm) = x(n)x(m) for
all n,m € Z.

Exzample 7.1.6. — (1) Let x : (Z/8Z)* — C* be defined by x(1) = 1, x(3) = —1,
Xx(5) =1 and x(7) = —1. Then it is clear that x(a + 4) = x(a), and thus f, = 4.

(2) Let p be an odd prime. Then Legendre symbol a — (%) defines a Dirichlet character
of conductor p.

Let x and v be two Dirichilet characters with conductors f, and fy. Consider their the
homomorphism
v (Z/lem(fy, fy)Z)* — C*.
We define x4 to be the the primitive character associated to . Note that, in general, the
conductor of x is smaller than lem(fy, fy)-

Exzample 7.1.7 — Define y modulo 12 by x(1) =1, x(5) = —1, x(7) = -1, x(11) =1
and define ¥ modulo 3 by (1) and ¢(2) = —1. Then x% on (Z/12Z)* has values
x(1) = 1, X$(5) = x(B)(2) = 1, xb(7) = x(N(1) = —1 and x@(11) = x(11)(11) =
—1. One sees easily that y1 has conductor 4, and x1(1) = 1 and x%(3) = —1. Note that

xP(3) = =1 # x(3)¥(3) = 0.
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Let x be a Dirichlet character modulo N. We put

-~ X(1)
L(x,s) = rat
n=1
Proposition 7.1.8. — 1. The series L(x, s) absolutely converges in R(s) > 1;

2. We have the Euler product:
1
L(x,s) = ——— forR(s) > 1.
b <) Hl—x(p)p* (s)

p

3. If x is non-trivial, then L(x,s) has an analytic continuation into a holomorphic
function in R(s) > 0.

Proof. — Statement 1 follows from the fact that | " %’;” < ((0) with o = R(s). State-
ment 2 follows from the fact that x(mn) = x(m)x(n). For statement 3, it follows easily
from Proposition 7.1.4(1) that S; :== >, -, x(n) = O(1) when ¢t — +o00. Then we conclude
by Proposition 6.2.2. - ]

7.2. Factorization of Dedekind zeta functions of abelian number fields
We fix an integer N > 3. Consider the N-th cyclomotic field Q(¢n). We recall that

g = Gal(Q(¢Cn)/Q) = (Z/NZ)*

such that for a € (Z/NZ)*, the corresponding o, € Gal(Q(({x)/Q) is defined by o,({n) =
¢%- Therefore, we can identify the set of Dirichlet characters modulo N with G.

Let K be a subfield of Q(¢x), denote H = Gal(Q({x)/K) and G = Gal(K/Q) =G/H.
By Corollary 7.1.2, there is an exact sequence

05G—G— H—0.

Thus G is identified with the set of Dirichlet characters modulo N which are trivial on H.
Example 7.2.1. — Let p be an odd prime, and p* = (—1)%1]0. Then K = Q(/p*) is the
unique quadratic field contained in Q((,). The Galois group G' = Gal(K/Q) is isomorphic
to Z /27, and the non-trivial element of G is the Dirichlet character with conductor p given
by x(a) = (%) for a € (Z/pZ)*. Thus, for an odd prime ¢, x(¢) = 1 if and only if ¢ splits
in K.

Proposition 7.2.2. — Under the above notation, we have
Cr(s) =] Lx9)-
x€G
Remark 7.2.3. — The assumption that K is contained some cyclotomic field is equiv-

alent to saying that K/Q is a Galois extension with abelian Galois group. Actually, it
is famous Kronecker-Weber Theorem. We refer the reader to [Wa96, Chap. 14] for a
complete proof using class field theory. In Section 7.5, we will give an elementary proof
when K is a quadratic field.
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Now we turn to the proof of Proposition 7.2.2.

Proof. — In view of the Euler products for (x(s) and L(x,s) (cf. Lemma 6.2.3 and
Proposition 7.1.8), it suffices to prove that, for every rational prime p, one has

(7.2.3.1) [Ta-N@™) =[] -x@pr),

plp XE@

where p runs through the primes of K above p. Recall that K is a subfield of Q({x) with
subgroup H = Gal(Q(¢n)/K) C Gal(Q(¢{n)/Q). We distinguish two cases:

— Consider first the case p 1 N. Then p is unramified in Q({x) by Proposition 3.5.1,
and hence in K. Denote by o, € G the Frobenius element of p. If we regard G as a
quotient of Gal(Q({n)/Q) = (Z/NZ)*, then o), is given by the image of p mod N.
Let D, = (0,) € G denote the decomposition group at p, f = #D, be the order of
op so that D), = Z/fZ, and put g = #G/#D,. Then p splits into g primes in Ox
and each of them has residue degree f. Hence, one has

[[a-N@)™) =@-p 7).

plp

On the other hand, recall that ﬁp = fy, where py is the group of f-th roots of
unity, and the isomorphism is given by sending a character v to its value at o,. By
Corollary 7.1.2, each character of D, lifts to exactly g characters of G. Hence, when

x runs through G, X(p) will take every f-th root of unity exactly g times. One get
thus

[Ta=xp ) =J[ -7 =0-p 7,
xed E€py

and (7.2.3.1) is proved. Here, the last step used the equality
[ (x —¢a)=x7—a’,

€y
for the variables X and a.

— Assume now p|N. Write N = p*m with ged(p,m) = 1. Then Q((y) is the composite
of Q(¢,») and Q((m). Since p is totally ramified in Q((,x) and unramified in Q(¢m),

Gal(Q((n)/Q(¢m)) = Gal(Q(Gr)/Q) = (Z/p*Z)

is the inertia subgroup of Gal(Q((n)/Q) at p. Let I, denote the image of
Gal(Q(¢n)/Q(¢m)) in G.  Then I, is the inertia subgroup of G at p, and
Ko = KN Q((n) = K is the maximal sub-extension of K in which p is un-
ramified. Assume that

POk, =Po,1 -+ Po,g;
where each p; has residue degree f over p. Then, for each pg;, there exists a unique
prime p; such that po;Ox = p$ and N(p;) = N(po;) = pf, where e = [K : K.



7.3. DENSITY OF PRIMES IN ARITHMETIC PROGRESSIONS 77

Therefore,

[T a-N@=) = J] 1-Npo)™).
pCOK poCOK,
plp polp

Put Gy = G/I, = Gal(Ko/Q). Then Gy is identified with the subgroup of y € G
that factorizes through Gg, and a character x € G 1f and only if it s induced from

a Dirichlet character of (Z/mZ)*. Hence, for x € G, we have x € Gy if and only if
x(p) # 0. It follows that

[Ta=x@pr ) =TT 0= x@p™).
xe@ xeGo

Now the equality (7.2.3.1) follows immediately from the previous case with K re-

placed by Ky and Q({xn) replaced by Q((n)-
O

One deduces easily from Proposition 7.2.2 the following important:

Theorem 7.2.4. — Let K and G be as above, and xo € G be the trivial character. Then
2 (2m)"2 Rih
IT 261 = 2rem) Fch

wy/[Ak]

where r1 and 9 denote respectively the number of real embeddings and mon-real complex
embeddings of K, Rk the requlator of K, h the class number, w the number of roots of
unity in K, and Ag the discriminant of K. In particular, L(x,1) # 0 if x # Xo-

xeé
XFX0

Proof. — By Proposition 7.2.2, we have

ggq(s—l)CK(S)zggq<S—1 ) [T 266D
xGG
X7X0

Since both (x(s) and ((s) have a simple zero at s = 1, the Theorem follows immediately
from Theorem 6.2.4. O

7.3. Density of primes in arithmetic progressions

We now deduce from Theorem 7.2.4 Dirichlet’s famous theorem on primes in arithmetic
progressions. We have seen in Corollary 6.2.5 that

S

1 1
Z—Nlog ,  When s — 1.
s—1
P
For a subset T' of rational primes, if there exists a real p € [0, 1] such that

1 1
Z—Nplog when s — 1,
S s—1
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we say that 7" has Dirichlet density p.

Theorem 7.3.1 (Dirichlet, 1837). — Let N > 1 and a be integers with ged(a, N) = 1.
Then the subset of primes p with p = a mod N has Dirichlet density ﬁ, where (N)

denotes FEuler function. In particular, there are infinitely many primes p with p = a
mod N.

Proof. — For a Dirichlet character x, the Euler product for L(y,s) implies that

log L(x, s Z Z i"bpms, or R(s) > 1.

p m=1

Taking sums, one gets
-1

ZX Ylog L(x, s ZZ Z x(p™a ) mpms for R(s) > 1

p m>1

where y runs through all the Dirichlet characters (Z/NZ)* — C*. By the orthogonality
of characters (Proposition 7.1.4), we have

ZX(pma_l) _ {4,0(]\7) if " =a mod N,

0 otherwise.

Therefore, one has

1 1
ZX Dlog L(x,s) = ¢(N) > szr(P(N)Z( 2 mpm&)

p=a mod N m>2 “pMm=a mod N

Now if x is trivial, then log L(x, s) ~ log ﬁ when s — 1; if x is non-trivial, then the non-
vanishing of L(x, 1) by Theorem 7.2.4 implies that log L(x, s) is bounded in a neighborhood
of s = 1. On the other hand, the term of summation on m > 2 is bounded for R(s) > 1/2
as in the proof of Corollary 6.2.5. It follows immediately that

1 1 1
Z —~——1log——, when s — 1.
S

< EE
p=a mode (’O(N) 1

O]

Remark 7.3.2. — (1) We can also define the natural density for a subset T of all prime
numbers as follows. Let m(z) denotes the number of primes less than z for any = > 0, and
mr(x) be the number of primes numbers in T less than x. Then the natural density of T
is defined to be the limit
lim mr ()
r——+00 7T(:L‘)

whenever it exists. In general, a subset T has a natural density p € [0,1], then its
Dirichlet density must exist and equal to p. Conversely, if T" has Dirichlet density p, then
it is possible that the natural density of T" does not exist at all.
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However, for the subset of primes p with p =a mod N for ged(a, N) = 1, this “pathol-
ogy” does not occur. Actually, the proof of Dirichlet’s Theorem uses essentially the non-
vanishing of L(x, 1) for any non-trivial Dirichlet character y. It is true that L(x,s) does
not vanishes on the whole line R(s) = 1. Using this fact (together with Tauberian The-
orem), one can prove that the natural density of primes p = @ mod N exists and equals
to ﬁ. We refer the reader to [La94, Chap. XV] for a proof.

(2) It is easy to generalize the notion of Dirichlet density and natural density to subsets
of an arbitrary number field. The generalization of Dirichlet’s Theorem to this case is

called Chebotarev density theorem:

Theorem 7.3.3 ([La94] Chap. VIII, Theorem 10). — Let L/K be a finite Galois
extension of number fields with Galois group G. Let o € G and ¢ be the conjugacy class of
o in G. Then the subset of primes p of K which are unramified in L and for which there

exists B|p such that
(%)
o=|—
RY

has a density, and this density equals to p = % Here, for a finite set S, |S| denotes its

cardinality.

It is clear that when L/K is Q((x)/Q and o = o, with a € (Z/NZ)*, Chebatarev
density theorem is equivalent to Dirichlet’s theorem.

7.4. Values of L(x,1) and class number formula

7.4.1. Gauss sums. — Let x be a Dirichlet character of conductor f > 3, and x denote
the complex conjugate of x, i.e. x(x) = x(z). Note that x(z) = x(z™') for = € (Z/fZ)*.

2mi
Put (y = e 7 , and we write ¢ = (y when there is no ambiguity. We define the Gauss sum
associated to x to be

)= > x@)¢"
z€L) 7.
and put 7(x) = 11 (x). More generally, for any a € Z/NZ, we put
()= ) x(@)¢.
z€L) 7.
Lemma 7.4.2. — The following statements hold:

1. 74(7) = x(a)7(x) for any a € (Z/fZ). In particular, T4(x) = 0 if ged(a, f) # 1.
2. 7(0)7T(X) = x(=1)f.
3. 7 = V.

Proof. — (1) We consider first the case ged(a, f) = 1. Then
()= Y, “x(@)=x(a) Y (“x(az)=x(a)7(x).

€2/ f7 z€Z/fZ
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Assume now that ged(a, f) = d > 1. Write a = d'd, f = f'd, and (p = ¢%. Then

f=1d—1
ST octexa) = 303 I x (s + 1)
x€Z/fZ s=0 t=0

-1

-5 6 (S v )

We claim that Z{;Bl x(s +tf) = 0. Actually, If ged(s, f’) > 1, then every term in the
summation is 0. If ged(s, f') = 1, let H denote the kernel of the natural reduction map
(Z)fZ)* — (Z]f'Z)*. Then the sum is the same as

Y x@ =) Y wa) =o.

ve (2] 1Z)* acH
r=s mod f’

Here, the last equality uses Proposition 7.1.4 and the fact that x|z is non-trivial (as x has
conductor f).
For (2), we have

)T = Y, TOox(@¢ = Y Talx)¢

ac(Z/f2) a€Z/fZ
= > x(w)( > C““”)):x(—l)f-
x€ZL/fZ a€Z/f7

For (3), it suffices to show that |7(x)| = |7(x)|- Indeed,
=0 x@= Y x@¢"=x(-Drx)

©€Z/ 7 ©€Z/ T
O
Theorem 7.4.3. — Let x be a Dirichlet character of conductor f > 3. Then
-1 -1
L(x, ﬂ Z )log|l — (% = —T(—X a) log( smﬂ—a)
f a=1 f a:l f

if x(=1) =1, and

L(x, Z X(a
if x(=1) = —1.
Proof. — We consider for any a € (Z/fZ)* the Dirichlet series
too can
ns’

n=1
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which absolutely converges in R(s) > 1. Using the same method as Proposition 6.2.2, we
see that it has limit

too Can
>— = —log(1 —¢*) whens— 1%,

n=1 "
where we take the branch of the multiple valued function log(z) on z € C — {0} that takes
real values on z € ]R>o. Multiplying with y(a) and taking sums, we get

“+oo Can “+oo 1

g 0> 5= T wee)

= n=1" \ae(Z/f2)"

S
=700 L5 = o M)

Here, the last two equalities uses Lemma 7.4.2. Hence, it follows that

n=1

-1
Lix.1) = —X(‘lfm) S x(a) log(1 — ¢%).
a=1

Note that )
. a
log(1—¢*) =log |1 — ¢ + 7”(? —3)
We now distinguish the two cases on the parity of y.

— x is odd, i.e. x(—1) = —1. In this case, since |1 — (%] = |1 — (7%|, we get

f-1
> x(a)log|l —¢*| = 5 Z( 1og|1—¢“|+x<>log|1—<—a)
a=1

a=

1 f=
=3 ( (a) + x(—a))log |1 — ¢*[ = 0.
a=1
Thus we get
L) = "0 S K - 1) = TS
’ f a=1 f f2 a=1
— x is even, i.e. x(—1) =1. Then
R T
2 X(a)(? —3)= 37 a:1(>2(a) +X(=a))a =0
It follows immediately that
f—1
Lix. Zx Jtog 1= ¢ = =T 3 x(a) togloin )
a=1
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7.5. Class number formula for quadratic fields

Let K = Q(v/dk) be a quadratic field of discriminant dg, and G = Gal(K/Q) denote
the Galois group.

Proposition 7.5.1. — The quadratic field K is a subfield of Q(Cay ). Moreover, the non-
trivial Dirichlet character x4, of G has conductor |di| and is determined by the following
rules:

() Xag (—1) = 95

ldr|”
(b) Xax(2)=(-1)"5" zf dx =1 mod 4 and x4, (2) = 0 otherwise.
(¢) Xdx(p) = (d?) zfp is an odd prime; in particular, xq,(p) =0 ifp | dk.

2

Proof. — To show that K C Q((a, ), we proceed by induction on the number of distinct
prime factors of di. Assume first dx has only one prime factor. If |dx| = p is odd, then

dg = (—1)pT_lp and K is the unique quadratic subfield of Q(¢,) by Lemma 3.5.5. If df is
even, then the possible values for di are —4 and +8. It is clear that K C Q((g) in all three
cases. Assume now dg has r > 2 distinct primes factors, and that the assertion is true for
K' = Q(V/d') with d'|dg and d' # dr. Write dx = mp*, where p* = (—1)pT_1p for some
odd prime p. By induction hypothesis, we have Q(y/m) C Q((r) and Q(v/p*) € Q(¢p).
Therefore, we get

K C @(\/E’ \/E) c @(va Cm) = Q(Cd}{)

This completes the proof of the first assertion of the Proposition.

Let f denote the conductor of xg,. Then it is the minimal positive integer such
that x4, @ (Z/dxZ)* — C* factors through (Z/fZ)*. Since the quotient (Z/fZ)*
(Z/dKZ)* corresponds to the subfield Q((f) of Q(dk). Thus, Q((s) is the minimal cy-
clotomic field that contains K. Because of ramification, it is clear that f must contain
all the prime factors of dx. Therefore, it remains to exclude the case where dxg = 8d’
with d’ odd and f = 4|d’|. We need to show that it is impossible that v2d’ € Q((4a).

Write 2% = (—1)d2_12 and d* = (—1)d2_1d’. Then d* = 1 mod 4, and there exist
i—1

distinct odd primes p; such that d”* = [[._, pf, where p; = (—1)p2 p;. Note that

Q(/P;) € Q(¢p;) € Q(Caar)- Thus, if v2d' € Q(C4qr), then one would have

\/27 \/Td’ S Q §4d/

H
\F
and hence (g = @ + Q € Q(ua) and Q((gar) = Q(C4qr)- This is clearly absurd.

It remains to prove that x4, satisfies the rules (a), (b), (c), which clearly determine
Xxk- We regard G as a quotient of (Z/dxZ)*. The complex conjugate of K is the image
of —1. Then rule (a) follows immediately, since x4, sends always the non-trivial element
of G to —1. Similarly, if p is a prime not dividing dk, then p is unramified in K and the
Frobenius element o, of K/Q is given by the image of p mod di. Thus, x4, (p) = —1 if
and only if p is inert in K. If p | di, then x4, (p) = 0 by definition. Now rules (b) and
(c) follow immediately from Theorem 3.2.5. O
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Example 7.5.2. — If |dg| = p is an odd prime, then yq, () = (g) is the Legendre
symbol by quadratic reciprocity law.

We have seen that Gauss sums enter into the computation of L(y,1) for a Dirichlet
character x. In general, it is hard to give an explicit value for 7(y). However, in the our
case, we have the following

Theorem 7.5.3. — Let xq, denote the non-trivial Dirichlet character associated to a
quadratic field K. Then

T(Xd ) _JV ’dK‘ ZfX(_l) =1,
o iVIdkl i x(=1) = -1,
where \/|dk| is the positive square root of |df]|.

We will postpone the proof of this Theorem to the end of this section. We now state
the main result of this section.

Theorem 7.5.4 (Dirichlet’s class number formula). — The class number of a
quadratic field K of discriminant dg is given by

ldrc|—1

Z Xd (@

if dg < —4, and

Ta
= Z Xdg (@) log(sin d—)

log K

if dg > 0, where € > 1 is the fundamental unit of K.
Proof. — By Theorem 7.2.4, we have

JV1d
h= ML(XC,K, 1) ifdg < —A4,
Vs

and

b= Vdk|

- 210g(€)L(XdK7 1)

if dg > 0. By Proposition 7.5.1, x has conductor |dg|. It follows from Theorems 7.4.3
and 7.5.3 that

(xXdp )i . dx| 1 |dg|—1
dg|32 & Z Xax (a)a = x| ; Xdx (a)a
if dg < —4, and
(Xd ! Ta | & ra
2|dK|1/2Ifog az_: Xdx (@) log(sin @) = _log(z—:) Xdg (@) log(sin E)
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if dg > 0. Here, the last step uses the symmetry xq, (a) = x(dx — a) and sin ﬂ%}(—a) =
sin %.
O
Corollary 7.5.5. — Under the notation of the Theorem, and assume that |dx| = p is
an odd prime. Let R (resp. N ) denote the subset of quadratic residues (resp. quadratic
non-residues) modulo p of {1,2,--- ,p— 1}.
1. If dg = —p, then

1 p—1 2
h:E(Zb—Za):T—f

beN a€ER p a€R

In particular, h is always odd.
2. If dg = p, then
h_ [ sin %b
[1,sin %}
where a (resp. b) runs through the elements of RN [1, %] (resp. of N N[1, %])
Proof. — Indeed, if |dg| = p is an odd prime, then xgq, (z) = (%) Thus xa, (z) = —1
(resp. Xxax(z) = 1) if and only if x is a quadratic non-residue (resp. quadratic residue)
modulo p. The Corollary follows immediately from the Theorem. ]

Remark 7.5.6. — In the case dx = —p, we have in particular that >, b > > -y a.
Despite of its elementary appearance, an elementary proof of this fact has not been found
yet.

Corollary 7.5.7. — Assume that dx < 0 and 2|dx. Then the class number of K is

2
h = “Tdr] Z Xdg (@)a + Z Xdg (@).

0<a<|dk|/2 0<a<|dk|/2

Proof. — Indeed, one has

b S Gl s (] - vy (] - )

0<a<|dk|/2
1

s M CRC R
K0<a<|dK\/2

where the last equality used the fact that xq, (|dx| — a) = —xa, (a). Now the corollary
follows immediately. O

Example 7.5.8. — Let K = Q(+/—56). For an odd prime p, one has

v = (5= (5) G) ) - G) )
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Now it is easy to see that for 0 < p < 28, one has

o {1 fr=3513192
X=96WPI = L1 i p = 11,17

Therefore, it follow that
Z X756(a) =8, Z x756(a)a =112.
0<a<28 0<a<28

Hence, one gets h = 4, which coincides with the computation in Chapter 5.

We now turn to the proof of Theorem 7.5.3 by starting with the following

Proposition 7.5.9. — If di and dy are discriminants of some quadratic fields with
ged(dy,da) =1, then

Xd1 (|d2|) = Edl,dzxdz(’d1’)>

where €4, 4, = —1 if both di and do are negative, and €4, 4, = 1 otherwise.

Proof. — Indeed, if d; = dsd4 where d3 and d4 are coprime discriminants of some quadratic
fields, then it is easy to see that Xdg,dq, = XdsXd,- One checks also easily that the right
hand side is multiplicative in d;. The same thing holds for ds by symmetry. By induction,
we may assume that both dy and dy are powers of primes. The possible values for d; and
do are —4, 18, p and —gq, where p is some prime with p =1 mod 4 and ¢ is a prime with
qg = 3 mod 4. By a direct check, we see easily that the statement is equivalent to the
quadratic reciprocity law. For instance, if both d; = —¢; and do = —¢o where ¢; and ¢
are primes congruent to 3 modulo 4. Then it follows that

(2] = x-an(a) = (1)

q2
q2
= () = vala) = (e
q1
where the third equality uses quadratic reciprocity law. ]

Proof of Theorem 7.5.3. — First, we reduce the problem to the case when dx has only
one distinct prime factor. Indeed, if dx has more than one distinct prime factors, one can
write dig = dydy with ged(dy,d2) = 1, where dj,ds are discriminants of some quadratic
fields. Then by Proposition 7.5.1, it is easy to see that x4, = X4, Xd,- Since {z|di|+y|d2| :
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1<z <|da],1 <y <|di|} form a set of representatives of Z/dxZ, we have

|d2] 1] |
di|+ d . 27
XdK ZZXdK ’dl, + y’d ’)(‘xd‘I:l' vldz| y with C|dK| = eldkl
r=1y=1
|d2| |di]
= (Id21)xas (1d1)) Y D> Xao ()Xt (0) Gy il
r=1y=1

= Xadi ([d2)xd, (|d1])7(xa, )7 (Xan)-

= Edl,dQT(Xdl)T(Xdz)v
where we have used Proposition 7.5.9 in the last step. Clearly, if Theorem 7.5.3 holds for
T(xd,) and 7(xa,), then it holds for 7(x4,d,)-

Thus we may assume that dg has only one prime factor. When dg is even, then
dg = —4,%8 and the formula for 7(x4,) can be checked easily by hand. We assume
hence that dg is odd, and let p = |dx|. Then dg = p if K is real, and dx = —p if K is
imaginary. Let R (resp. N) denote the set of integers a with 1 < a < p — 1 which are
quadratic residues (resp. non—residues) modulo p. Then

T(Xdx ) ZXdK ==y ¢

a€R beN
27
where ( =e » . Since > ,cp (" + > ey ¢’ = —1, one obtains
— 2miz?
() = 1423 ¢ = ze .
acER
Then the Theorem follows immediately from Prop081t10n 7.5.10 below. O

Proposition 7.5.10. — Let N > 1 be an integer, and v N denote its positive square
root. Then we have

(14+i)VN ifN=0 mod 4,

N-1 ,
Sy = Z p2miz® /N _ VN if N=1 mod 4,
=0 0 if N=2 mod 4,

iVN if N=3 mod 4.

Proof. — Let f(x) denote the periodic function with period 1 and
N-1 ,
x) = Z 2@t /N for € [0,1).

It is continuously differentiable except at © € Z and continuous everywhere. Hence, its
Fourier series converges to f(x) pointwise. We obtain therefore

—+00
§ : am672mm’

m=—00
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with
1 N-1 = N
0, = / F(t)emmt = 3 / p2mi(mi ()2 /N) gy _ / Q2mi(mi+2/N) gy
0 = Jo 0

Taking z = 0, we get
400 N ‘ )
Sy = f(0) = Z / 2T mt+2/N) g
0

m=—0o0

+00 1
=N Z /0 2N (W mi) gy (set z = Nt)

m=—0oQ

m

+ m
= _mnme (12 2miNy? m
=N E e 2 e dy (sety:t—l—E).

m=—0oQ 2

Note that e Nm” equals to 1 if m is even, and to i~V if m is odd. Thus, we divide the sum
over m into two parts according to the parity of m, and we put m = 2k and m = 2k — 1
in the two cases respectively. Then we get

T gkt k+1/2
Sy =N Z / e?miNy dy+Ni_N/ e2™NY dy
o JE k—1/2
+oo o
:N(1+i_N)/ TNV dy
—0o0
400 .
Z\/N(l—i-i_N)/ e dz  (set z = VNy).
—0o0

Now the value of C := fj;o 2™ 4 is a independent of N. Letting N = 1, one finds
easily that C' = H% Therefore, one finds
14N
Sy =VN——
v =VN 1441
from which Proposition 7.5.10 follows immediately. O






CHAPTER 8

NONARCHMEDEAN VALUATION FIELDS

8.1. The introduction of p-adic fields

The idea of introducing p-adic numbers comes from solving polynomial equations mod-
ulo arbitrary powers of a prime number p. There are two approaches to define p-adic
numbers:

1. We define first Z, as an inverse limit of Z/p"Z, and consider Q, as the fraction field

of Zy.

2. We equip first Q with a p-adic absolute value, define Q,, as the completion of Q under

this absolute value, and Z, as the valuation ring of @, with p-adic absolute values

<1
8.1.1. p-adic numbers as inverse limit. — Let p be a prime. We put
Zy = l'&n(Z/p”Z) = {(zn)n € H Z/p"Z : xpy1 mod pt =y, }
n n>1

that is Z, is the subset of [, -,(Z/p"Z) such that its n-th component is the reduction
modulo p™ of its n + 1-th component. We equip Z, the componentwise ring structure
induced from [], <, Z/p"Z.

Proposition 8.1.2. — The ring Z, is an integral domain, and it is a local rTing with
unique mazimal ideal pZy.

Proof. — We prove first that Z,, is integral. Let = (zp)n,y = (Yn)n € Z, be non-zero
elements. Let mg,no be the minimal integers such that z,,+1, Yno+1 7 0. Then for any
m > mg+1and n > ng+1, one has x,,, = p"u,, and y,, = p"°v, with u,,, v, not divisible
by p. Then
(xy)mo-l-m)-l—z = pm0+n0umo+NO+2vmo+no+2

is nonzero in Z/p™t"0Z. This proves that Z,, is integral. It is clear that pZ, is a maximal
ideal of Z,. To show that it is the unique maximal ideal, we have to show that every
element of Z,\pZ, is invertible in Z,. Actually, if x € Z,\pZ,, then there exists a unique
Yn € Z/p" such that z,y, = 1. So y = (yn)n>1 well defines an element of Z, by the
uniqueness, and xy = 1 in Z,.
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O]

We equip Z, with the topology such that, for every a € Z,, (a + p"Zy),>1 form a
fundamental system of open neighborhood of a. It is clear that the topology is invariant
under translation, and Z, becomes a topological ring, i.e. the addition and multiplication
on Z; are both continuous under this topology.

Proposition 8.1.3. — The topological ring Z;, is complete in the sense that every Cauch
sequence (an)n>1 € Zy has a limit in Z,. Moreover, Z is dense in Zj.

Proof. — For any integer m > 1, there exists N(m) such that for any ni,ne > N(m) one
has an, — an, € p™Z,. Therefore, the image of a, in Z/p™% is independent of n > N,
and we denote it by b,,. Then (by,)m>1 well defines an element of Z,, and a, — b when
n — oo. The subring Z C Z,, is clearly dense in Z,, since the natural map Z — Z/p"Z is
surjective. O]

We define Q, as the fraction field of Z,. The topology on Z, extends naturally to a
topology on @, so that @, is a complete topological field. Then every element of Q, writes
uniquely as x = p"u with n € Z and u € Z;. Since Z C Zj, is dense, Q is also dense in Q.

8.1.4. p-adic numbers as completions. — We now explain an alternative way to
define the p-adic field Q,. We define a p-adic norm |- |, : Q@ — R>( by the following rules:
1. |0], = 0;

-n

2. for v = p"§ € Q with p{a,b, we put |z, = p

Then one verify easily that |- |, satisfies the ultra-metric inequality

|z + y|p < maX{|1‘|p, ’y|p}7 for z,y € Q.

Hence, |- |, defines a metric on Q. We can define alternatively Q,, as the completion of Q
under the norm | - |,.

The existence of the completion follows from the general theorems in analysis. Then Z,
can be defined as the subring of Q, consisting of x € Q, with |z[, < 1. The equivalence
of these two definitions follows from Proposition 8.1.3.

A series "% a,, with a,, € Q, converges in Q,, if and only if |a,|, — 0 as n — +ooc.
Every element z € Q, writes uniquely of the form

x = Z app”, with a, € {0,1,--- ,p—1}.
n>>—oo

If z € Q, we call such an expression the p-adic expansion of x. In particular, we have an
equality in Q) :

1 X
- an.
n=0

1—p_
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Example 8.1.5. — In Qs5, we have the expansions:
1

5:3+2><5+2><52+---+2><5"+.--,

1
g:2+3><5+52+~--+3><52"‘1+52”+~~-

8.2. Absolute values and completion

Definition 8.2.1. — A waluation field (K,|-|) is a field K together with an absolute
value (or a multiplicative valuation) |- | : K — R>q such that

(1) |z| = 0 if and only if z = 0;

(2) |zy| = |z[ly| for any z,y € K;

(3) |z +y| < |z|+ |y| for any z,y € K.
If condition (3) is replaced by the ultra metric inequality

|z + y| < max{[z], |y[},

we say that | - | is non-archimedean; otherwise, we say | - | is archimedean. We say two
norms | - |1 and | - |2 are equivalent if there exists r > 0 such that |- |2 = |- [].

Note that condition 2 implies that || = 1 for any root of unity ¢ contained in K.
A norm |- | on K makes K a metric space, and hence defines a topology on K: the
subsets
Ula,e)={x € K:|xr—a|<e} forac Kande>0
form a topological basis. It is clear that equivalent valuations define the same topology
on K.

Proposition 8.2.2. — Let (K,|-|) be a valued field. Then there exists a unique field
(IA(, | - |f() such that
(1) K is a subfield of K, and the restriction of | - |z to K is | -|;
(2) K is dense in K for topology defined by | - |25
(3) K is complete under | - |25
(4) if f:(K,|-]) = (L,|-|1) is an embedding of normed fields with L complete, then f
extends uniquely to an embedding f : (K, |- 1z) = (L] -|r) of normed fields.

Proof. — 'This is a standard abstract nonsense in analysis. We recall briefly the arguments.
Recall that a sequence (a,)n>1 in K is called a Cauchy sequence, if for any ¢ > 0, there
exists an integer N > 1 such that |a,, — a,,| < € for any n,m > N. Two Cauchy sequences
(an)n>1 and (by)n>1 are called equivalent if for any € > 0, there exists an integer N > 1
such that |a, — b,| < € for any n > N. As a set, K is the equivalence class of Cauchy
sequences in K, and K embeds naturally into K via a — (a,a, -+ ,a,--+). For a Cauchy
sequence r = (x,)n,>1 in K, one put

|a:]K:117131]a:n].
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It is easy to check that if z = (z,)n>1 and y = (yn)n>1 are equivalent Cauchy sequences,

then |z|z = [y|z. This implies that |- |5 is well defined, and | - | restricts to |- | on K.
It is clear that K is dense in K, since every Cauchy sequence (ap)p>1 in K is approx-
imated by the constant Cauchy sequences (@, ,an, -+ ,apn, -+ ) when n — +oo. It is

also clear that the addition and multiplication on K extend naturally to K. We verify
now that K is a field. Let a = (ap)n>1 be a non-zero Cauchy sequence. Then there exists
an integer N > 1 and a constant C' > 0 such that a,, # 0 and |a,| > C for all n > N.
Define a sequence b = (b, )p>1 with b, =1 for 1 <n < N —1 and b, = a,! forn > N.
Then, for any n,m > N, one has

b, — b | = |an|_1|am|_1|an —am| < C_2|an — Q-

Thus it follows that (b,)n>1 is a Cauchy sequence. It is clear that ab = 1 in K. This
proves that K is a field.

Now we prove that K is complete. Suppose given a Cauchy sequence (ay),>1 in K.
Let (anm)m>1 with ap n € K be a Cauchy sequence in K that represents a,,. Then, one
checks easily that the diagonal Cauchy sequence (ann)n>1 is the limit of (ay)n,>1 under
|- | on K. This shows that K is complete.

Let f:(K,|-|) = (L,|-|r) be as in (4). For a Cauchy sequence a = (a,)n>1 in K, we
define f (a) = limy, 400 f(ay). It is clear that equivalent Cauchy sequences have the same

image under f. Hence, this defines the unique extension of f to (I? A1)
O

We call K as above the completion of K, and we still denote | - | 7 by |- | for simplicity.
Now we introduce another way to define a non-archimedean norm on K.

Definition 8.2.3. — An additive valuation (or simply a valuation) on K is a map v :
K — R U {400} such that

(1) v(x) = 400 if and only if z = 0;
(2) v(zy) =v(z) + v(y);
(3) v(z +y) > min{o(z),v(y)}
If v(K™) is a discrete subgroup of R, we say that v is a discrete valuation; if v(K*) = Z,
then we say that v is a normalized discrete valuation.

Two additive valuations v; and vy are called equivalent if there exists r > 0 such that
vi(x) = rua(z) for any z € K.

Given an additive valuation v on K and any real number ¢ > 1, we define a non-
archimedean norm on K by |z| = ¢ ¥®. Equivalent additive valuations or different
choices of ¢ will give rise to equivalent norms. Conversely, if | - | is a non-archimedean
absolute value on K and ¢ > 1 be a fixed real number, then v(z) := —log,(|z|) is an
additive valuation on K. Thus there is a natural one-to-one correspondence between the
equivalence classes of additive valuations and those of non-archimedean norms.
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Exzample 8.2.4. — (1) Let K be any field. We put |z| =1 if z # 0. Such a norm | - | is
called the trivial absolute value on K. The topology defined by K is the discrete topology
on K, i.e. every element of K is both open and closed in K.

(2) Let K be a number field, and o be a complex embedding of K. Then |z|, := |o(z)|c
defines a archimedean valuation on K. Later on, we will see that every archimedean
absolute value of K arises in this way. The completion of K under the norm |- |, is
R if o is a real embedding, and is C if ¢ is non-real. Moreover, K admits also non-
archimedean valuations. For every prime ideal p of O, let v,(x) € Z denote the exponent
of p appearing in the fractional ideal (z). Then x — wvy(x) defines an additive valuation
on K. The corresponding non-archimedean absolute value |z|, = N(p)~"(*) is called the
normalized p-adic norm on K.

(3) Let k be a field, and k(z) be the rational function field over k. Let p(x) € k[z] be
an irreducible polynomial. For any f(x) € k(z), one can write uniquely

f(z) = p(:v)ezgg, with a(x),b(x) € k[z] and p(x) t a(x)b(z).

Then vy, (f) = e defines an additive valuation on k().

Proposition 8.2.5. — Let K be a field, and | - | be a norm on K. Then |- | is non-
archimedean if and only if | - | is bounded above on the image of Z in K. In particular, if
K has characteristic p > 0, then every norm on K is non-archimedean.

Proof. — If | - | is non-archimedean, then
In|=1]1+---4+1] <max{|1l]} =1

Therefore, |-| is bounded on the image of Z in K. Conversely, suppose that |- | is bounded
on the image of Z by a constant C'. Then for any =,y € K and integer n > 1, we have

n
o= 13 (7)an 1 < el (7 ) el < C el )™
i=0
Hence, |z +y| < C/" max{|z|,|y|}. Letting n — 400, one obtains |z +y| < max{|z|,|y|}.
O
In the sequel, we will mainly focus on the non-archimedean norms.
Lemma 8.2.6. — Let |- | be a non-archimedean norm on a field K. Then one has
|z +y| = max{lzl, [y} for [z] # [y|.
Proof. — We may assume that |z| > |y|. Then by the ultra-metric equality, we have

lyl < lz[ = |z +y —y| < max{|z +y|,| = y[} = max{[z +y|, [y]}.
It follows immediately that |z| = |z + y|.
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Definition 8.2.7. — Let K be a field equipped with a non-archimedean absolute value
| - |. We define the valuation ring of (K, |- |) as the subring O consisting of x € K with
|z| < 1. Equivalently, if v : K — RU {+00} is an additive valuation such that |- | = ¢~¥0)
for some ¢ > 1, then O = {z € Ok : v(x) > 0}. Moreover, if the valuation v is discrete,
then we call Ok a discrete valuation ring.

Remark 8.2.8. — One may think of the valuation ring Ok as the closed unit ball D(0,1)
in the topological field K. Let B = {z € K : |x| = 1} denote the boundary, and
D(0,17) ={z € K : |z| < 1} denote the open unit ball. Then Lemma 8.2.6 implies that
the distance between each point of B and a point in D(0,17) is always 1, and that the
open unit ball D(a,17) with center at a point a € B is contained in D(0,17).

Ezxample 8.2.9. — (1) The valuation ring of (Q, |- |,) is Z), while that of (Qy, | [,) is
Zyp. Both Z,) and Z, are discrete valuation rings, and Z,, is the completion of Z,) under
the p-adic topology (i.e. the topology defined by | - |,.)

(2) Consider the field C(x) equipped with the additive valuation vy defined by the
irreducible polynomial p(z) = = as in Example 8.2.4(3). Then the valuation ring of vy is
Clz](z), and the its completion under this valuation is C[[x]].

(3) Let K = C{{z}} denote the subset of f(z) = > .. anz" € C((z)) such that
f(2) defines a meromorphic function in a neighborhood of z = 0. Then f(z) — ord.(f)
defines an additive valuation on C{{z}}. The valuation ring Ok is the subring of C{{z}}
consisting of holomorphic functions in a neighborhood at z = 0. The completion of Ok
under this valuation is C[[z]].

Proposition 8.2.10. — Let (K,|-|) be non-archimedean valuation field, and O be its
valuation field. Then

(1) Ok is an integrally closed local ring with mazimal ideal mg = {z € K : |z| < 1}.

(2) If K denotes the completion of K under | - |, then the valuation ring Op is the
completion of O under |-|. Moreover, if 7 € m is a non-zero element, then one has
a canonical isomorphism

Op = @OK/W" ={(an)n € H Ok /m" : (xpy1 mod ") =z}

n>1

(3) If |- | is a discrete valuation, then myg is principal and all the non-zero ideals of Ok
are of the form mi with some n € Z>q; in particular, the only prime ideals of O

are 0 and mg, and n‘t"K/t'n}‘('H is a one-dimensional vector space over k := O /mp.

Proof. — (1) Let x € K be a nonzero integral element over O. Assume that
2"+ a1 4t a, =0

with a; € Ok. Assume that |z| > 1. Then |a;z" "% = |a;||z|*~* < |z|® for any i > 1.
Therefore, we have 0 = 2" + ajz" ! + .-+ + a,| = |2|® > 1 by Lemma 8.2.6, which is
absurd. This shows that |z| < 1, ie. © € Og. To prove that m is the unique maximal
ideal of Ok, it suffices to note that for any u € Ox —m, one has |[u™!| = |u|~! = 1, hence
ute Ok.



8.2. ABSOLUTE VALUES AND COMPLETION 95

(2) Since K is dense in K , the closure of Ok in K is the exactly the subset {z €
K : |z| < 1}, that is Of. Denote temporarily R = @n(OK/W"). We define first a
map ¢ : R — Op as follows: for x = (2,),>1 € R, let 2, € O be an arbitrary lift of
xpn € Ok /7™ for any n > 1. Then, one has

| T, — Zy| < |m|™  for all n > m.

As || < 1, we see that (Z,),>1 is a Cauchy sequence in Ox. We define ¢(x) € Op to be
the equivalence class of (Z,,),>1. Conversely, one has a map ¢ : Op — R given as follows.
Let a = (an)n>1 be a Cauchy sequences whose equivalence class is in O. Up to replacing
(an)n>1 by a subsequence, we may assume that a, € Ok and ap41 = a, mod 7" for all
n > 1. Let a, denote the image of a, in O /7"™. We put ¢(a) = [[,~1(@n) € R, which
depends only on the equivalence class of the Cauchy sequence (Gn)nz_l- Therefore, one
gets a morphism ¢ : Op — R. It is easy to check that ¢ and 1 are inverse of each other.
This proves that O — h(Lnn(OK/ﬂ")

(3) Assume that || is discrete, and let v : K — ZU{+4o00} denote the normalized additive
valuation attached to |-|. The maximal ideal of O is given by mg = {z € K : v(z) > 1}.
If 7 € K is an element v(m) = 1, then one has v(zr~!) > 0 for every z € mg, i.e.
xm~ ! € Ok. This implies that mx = (7). Let I C Ok be a non-zero ideal, and n > 0
be the minimal integer such that there exists z € I with v(z) = n. Then one sees that
"zl € Ok, hence " = (7"z~ ')z € I. Moreover, for any y € I, we have v(yr ™) > 0
by the minimality of n, and thus y € 7"Of. It follows immediately I = (7") = m’.

O

Remark 8.2.11. — One can give a simple “algebraic” characterization of discrete valu-
ation ring: for an integral domain R to be a discrete valuation ring, it is necessary and
sufficient that R is noetherian, integrally closed and has only one non-zero prime ideal.
For a proof of this statement, see [Se68, Chap. I, §2 Proposition 3|.

Definition 8.2.12. — Let (K, |-|) be a non-archimedean valuation field, and Ok be its
valuation ring and mg C Ok the maximal ideal.

— We call k:= O /mg the residue field of K (or of Ok).
— If the valuation |- | is discrete with normalized additive valuation v : K — ZU{+o0},
a uniformizer of K (or of Ok) is an element m € O such that v(7w) = 1.

By Proposition 8.2.10, the residue field of K is stable under completion. It is clear that
mg = () for any uniformizer 7 of K, and an element x € O is invertible in Ok if and
only if 7 t+ x. Every element of K writes uniquely as x = 7n"u with n = v(z) € Z and
ue OF.

The following Proposition is a very useful criterion for the equivalence of two non-
archimedean absolute values on a field K.

Proposition 8.2.13. — Two nontrivial non-archimedean absolute values | - |1 and | - |2
on a field K are equivalent if and only if their valuation rings are the same.
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Proof. — Assume first that |- |; and |- |2 are equivalent. They it is clear that |z|; < 1 if
and only if |z|os < 1. Therefore, the valuation rings of K for |- |y and | - |2 are the same.
Assume now that Ok is the common valuation ring of K for both |-|; and |-|2. Let b € K
such that |b]; > 1. Then b ¢ O, so that |b|2 > 1 and there exists a constant ¢ > 0 such
that |b|5 = |b]1. Up to replacing | - |2 by | - |5, we may assume that |b|2 = [b];. We have to
prove that |z|; = |z|s for all x € K. For any = € K, there exists a real number p > 0 such
that |z|; = |b|{. For any rational number r/s > p, we have

2]y < B/F o |2b " < 1o a'h " € Ok.
It follows that |2°07"|2 < 1, i.e. |x]2 < ]b|g/s. Similarly, for any rational m/n < p, we also
have |z|o > ]b];n/”. Letting m/n and r/s tend to p, we get

z|2 = [b]5 = |z]1.

8.3. Structure of complete discrete valuation fields

Let K be a complete discrete valuation field with normalized additive valuation v. We
will study in this section the structure of abelian groups K and K*. We fix a uniformizer
m € Ok, and a set of representatives S C Ok of the residue field k with 0 € S.

Proposition 8.3.1. — FEvery element of K writes uniquely as a Laurent series
T = Z anpm", witha, € S.
nz>>—oo
Proof. — Since every element of K writes uniquely as z = 7" with u € O%. It suffices

to prove the Proposition for x € Ok. Let & be the image of = in k, and ag € S be the
unique lift of Z. Then one has y; = z — ag € mg = (7). Thus one may write z = ag + 723
with x1 € Og. Repeating this process, one gets, for any integer N > 1,

N—-1

T = Z anm™ + Ny

n=0
with a, € S, x5y € Og. Letting N — 400, one proves the Proposition by Proposi-
tion 8.2.10.

O

8.3.2. Case of finite residue field. — Assume now that k is a finite field with car-
dinality ¢ = p® for some prime p. We will construct a canonical choice for S. We start
with
Lemma 8.3.3. — For any integer n > 1 and x € O, one has

(14+a"z)P € 1+ 77™MOk,  with y(n) = min{n + v(p), pn}.
Here, if K has characteristic p, we put v(p) = +00.
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Proof. — Note that the image of p (hence ¢) in O lies in mg. Then
(1+7"2)P =1+ por” + - + plar™)P~1 + (x7")P.

Since the minimal valuation of (?)(zn™)’ for 1 < i < p is v(n), the Lemma follows
immediately. O

Corollary 8.3.4. — For anyn > 1 and x € Ok, one has

(1+72)!" €1+ 7""0k.
Proof. — This follows immediately by applying repeatedly the Lemma above. O

Proposition 8.3.5. — For any a € k, there exists a unique lift [a] € Ok such that a is
the natural reduction of [a] and [a]? = [a]. In particular, if K has characteristic p, then
a — [a] gives rise to an embedding of k into K.

Such a lift [a] € Ok is called the Teichmiiller lift of a € k.

Proof. — The case a = 0 being trivial, assume that a # 0. We choose an arbitrary lift
a € Ok, and consider the sequence (&q")nzl. Then, for any integers m > n > 1, one has

~q™ o - g (A — T
a?" —a?" =a?" (a (a 1)_1)‘

Since a?" "~ =1ink, one has a?" "~! € 1+7Ok. By Corollary 8.3.4, one deduces that
a?" " "=l 1 e Ok
It follows immediately that
ja" —a?"| < fa?" |7 =[x

which tends to 0 when n — +oo. Thus, (@ ),>1 is a Cauchy sequence in O. As K is
complete, its limit, denoted by [a], exists in Ok. It is clear that [a]? = [a] by construction,
and that the image of [a] in k is a. When a runs over k, the [a]’s gives all the solutions to
2?7 =z in K. Therefore, [a] is the unique lift of a satisfying [a]? = [a].

O

Remark 8.3.6. — When a # 0, its Teichmiiller lift [a] is a (¢ — 1)-th root of unity in
Og. If K has characteristic 0, the map [] : £ — O is multiplicative, but not additive.

Corollary 8.3.7. — FEwvery element of x € K writes uniquely as

x = Z [an|7",  with ay € k.
n=>>—oo

In particular, if K has characteristic p, we have K = k((x)).

Proof. — 'This follows immediately from Proposition 8.3.1 and 8.3.5. 0
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8.3.8. Multiplicative structure. — We assume no longer that k is a finite field. We
consider the structure of K*. Denote by Ug = (’)[X<. We have an exact sequence
0-Ux - K*57Z—0,

where the surjection is given by x +— v(x). The choice of a uniformizer 7 gives a (non-
canonical) section of v : K* — Z. For any integer n > 1, we put

Ug ={re€Ukg|z=1 modn"}.
One gets thus a decreasing filtration
Up =Ux 2U 22U QU 2
The following properties for the filtration is easy to check:

— This filtration is separated in the sense that (1,5, U = 0.
— By the completeness of K, one has Ux = @n Uk/UR.
— One has isomorphisms of abelian groups U% /U 2 k* and UR/ U;é“ >~k

8.4. Hensel’s Lemma

Let (K,|-|) be a complete non-archimedean valuation field, Ok be its valuation ring
with the maximal ideal myg C O, and k = Ok /mg. Consider a polynomial
f(2) = an2™ +ap12" t + - +ao € K[z].

Define the Gauss norm of f as

(340.1) 171 = e { s}

We say that f(z) is primitive if || f|| = 1, or equivalent f(z) € O[] and f(z) # 0, where
f(z) € k[x] denotes the reduction of f(z) modulo mg.

Proposition 8.4.1 (Hensel’s Lemma). — Assume that f(z) is primitive, and one has

f(z) = g(z)h(z)

in k[z], where g(x) and h(z) are relatively prime. Then f(x) admits a factorization

f(x) = g(x)h(z),

where g(x),h(x) € Ok[z] and deg(g) = deg(g) and g(xr) mod myx = g(v) and h(x)
mod mg = h(z). Moreover, g and h are unique up to a unit of O.

Proof. — As g and h must be relatively prime in K[z], the uniqueness of g and h follows
easily from the unique factorization law in K[x]. Let r = deg(g) and s = deg(f) — deg(g).
First, we take gop and hg € Ok |x] such that

— go mod mg = g and deg(go) =7,

— hp mod my = h and deg(hg) < s,

— goho = f mod mg-.
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Note that the leading coefficient of gg is a unit in Og. Since ged(g, h) = 1, there exists
a,b € Og|[z] such that

ago +bhg =1 mod mg.

If f = goho, then we are done. Otherwise, let m € mg be a non-zero element such that 7
divides all the coefficients of f — gohg and agg + bhg — 1. We now construct by induction
on n > 1 polynomials g, h, € Ok such that

— gn = gn—1 mod 7" and deg(gn) = r;
— hp = hyp—1 mod 7" and deg(hy,) < s;
— f = goh, mod 7",

Then are the limits of g, and h,, as n — oo are the desired polynomials g and h respectively.
Assume now that ¢,_1 and h,,_1 have been constructed so that

f = gn—lhn—l + ann

for some f, € Ok|[z] and deg(f,) < r+s. Write g, = gp—1+ 7"pp, and hy, = hp—1 + 7" ¢,
where py, g, € Of|x] are polynomials to be determined later. Then one has

gnhn = gnflhnfl + 7Tn(pnhnfl + gnflc_In) mod 7Tn+1

= f +7"(puho + godn — fn) mod 7"+
Dividing 7", we get an equation
(8.4.1.1) prho + gogn = fn  mod .
From agg 4+ bhg =1 mod 7, one deduces that
afngo + bfnho = fr mod .
By Euclidean division, we get
bfn =ugo +v
for some u,v € K[z] and deg(v) < deg(go) — 1. Since the leading coefficient of go(x) is a
unit in Ok [z] and bf, € Ok|z], one sees easily that u,v € Og[x]. Then one get
vho + (afn + uho)go = fn mod .

Since deg(f,) < 7+ s and deg(vhg) < r + s, we can take p, = v and g, to be the degree
less than s part of af, + uho as the solutions to equation (8.4.1.1). O

Corollary 8.4.2. — Let f(x) € Oglx] and o € O be such that f(ag) = 0 mod mg
and f'(cy) = 0 mod mg. Then there exists a unique o € O such that f(a) = 0 and
a=oay mod mg.

Proof. — This is the special case of Proposition 8.4.1 with f(z) = x — &g, where ag is the
reduction modulo mg of ag. L]

Corollary 8.4.8. — For an irreducible polynomial f(x) = Y1 ja;x’ € K[|, then || f|| =
max{|ao|, [an|}-
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Proof. — Assume in contrary that there exists an integer j with 0 < j < n such that
|f| = laj|. Up to multiplying a constant, we may assume that [|f|| = |a;| = 1. Then
f(z) = aj27. Applying Proposition 8.4.1 with g = 27, we see that f(z) is not irreducible,
which contradicts with the assumption. O

8.5. Extensions of valuations

Let (K, |-|) be a complete non-archimedean valuation field, Ox, mx and k be as in the
previous section.

Theorem 8.5.1. — Let L/K be an algebraic extension of fields. Then there ezists a
unique extension of |- | to a non-archimedean valuation on L. If L/K is finite of degree
n, then this extension is given by

lz|L = |NL/K(9U)|1/na forany x € L

and L is complete with respect to this unique extension of |- |.

Proof. — Since an algebraic extension is a union of finite extensions, we may assume that
n = [L : K] is finite. Let |- |L be as in the statement. It is clear that |z|, = |z| for
x € K. We show first that | - | is indeed a non-archimedean valuation on L. Let Of,
denote the integral closure of Ok in L. We claim that Op, is exactly the subring of o € L
with |a|p < 1. Actually, if © € Of, then Ny g (x) € Op, hence |z|;, < 1. Conversely, if
|z|, <1, then Ny i (x) € Ok. Let f(x) be the minimal monic polynomial of a over K.
Then by Corollary 8.5.6, the Gauss norm of f is

£} = max{1, [Ny k(a)[} = 1.
Therefore, one has f(z) € Ok[x] and o € O.

It is clear that |zy|r = |z|r|y|r and |z|p = 0 if and only if 2 = 0. It remains to show
that |z + y|r < max{|z|z,|y|r}. We may assume that |z|r < |y|r. Up to dividing by
ly|L, it suffices to show that |z + 1|y < 1 for |z|r < 1. By the discussion above, this is
equivalent to saying that z + 1 € Op, for x € O, which is obvious since Op, is ring.

Now assume that |-|’ is another non-archimedean norm on L extending |-|. We have to
show that |a|r, = |a|} for all @ € L. We first prove that |«|, < 1if and only if |a|}; < 1. Let
f(z) = 2%4aq_ 129"+ - - +ag denote the minimal polynomial of a over K with some d|n.
Assume |a| < 1. Then one has a; € Ok for all i. If ||} > 1, then |a?|} > |a;all; > |af}
for all 0 <4 < d— 1. By Lemma 8.2.6, one has 0 = |f(a)| = |a|¢, which is absurd. Hence,
|a|r, <1 implies that |a|; < 1. Assuming moreover that |a|r, = ]ag/d] < 1, we prove that
la|; < 1 as well. We claim that a; € mg for all 0 < i < n — 1. Otherwise, there would
exist some j with 1 < j < n —1 and |aj| = 1. We may assume j is minimal with this
property. Then the reduction of f(z) is

f(@) =2 + ap_1a" '+ @l =2 (" 4+ ay).
Now applying Hensel’s Lemma 8.4.1 to § = 27, we get a factorization of f(z) in Ok|x],

which contradicts with the irreducibility of f(z). By Lemma 8.2.6, we see that |a|} < 1.
Now if |a|r > 1, then applying the previous discussion to a™!, we see that |a|} > 1.
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Therefore, this proves that |o|z < 1 if and only if (o} <1, ie. |- |y and |- |} give rise to
the same valuation ring on L. By Proposition 8.2.13, | - | and | - |, are equivalent. Since
they both extend the absolute value |- | on K, these two valuations are actually the same.

Finally, the completeness of L with respect to the norm |-|z, follows from the Lemma 8.5.3
below.

O
Definition 8.5.2. — Let V be a vector space over (K, |-|). Then a (ultra-metric) norm
on Visamap ||| : V — Rxg such that
(1) ||=|| = 0 if and only if x = 0;
(2) [[Az|| = |Alljz|| for A € K and x € V;
3) llz + yll < max{|[z[], ly[l}-
We say two norms || - || and || - ||2 on V' are equivalent if there exist constants C,Cy > 0

such that
Crllz|ly < |lzfl2 < Coflz])s.

Equivalent norms on a vector space V' define the same topology. Thus, V is complete

with respect to a norm || - ||; if and only if so it is with respect to any norm equivalent to
- {l2-
Lemma 8.5.3. — Let V be a finite dimensional vector space over (K,|-|). Then any
two norms on V' are equivalent, and V is complete (with respect to any norm).
Proof. — Let (v1,--- ,vy,) be a basis of V over K. For x = """ | a;v;, we define

ol = s {loal.
It is clear that V is complete under || - ||. It suffices to prove that every norm || - ||" on V
is equivalent to || - ||. Indeed, if Co = maxj<i<y [[vi]|’, then

n
1)~ aiwill” < Comax{la;|} = Cof|.
i=1
To find Cy > 0 such that [|z||" > C1||z||, we proceed by induction on n > 1. When n = 1,
the assertion is trivial. Assume now n > 2 and the assertion is true for n — 1. Then, for
1 <4 < n, the vector space

Vi=Kuvi+ - Kvio1+ Kvigr + - + Koy

is complete under the norm || - || by induction hypothesis. Hence, v; + V; is a closed in V'
with respect to the topology defined by || - ||'. As 0 ¢ v; + V;, there exists an ¢ > 0 such
that

U(0,e) = {z € K, ||z|| < €}
is disjoint with v; + V;, i.e. ||z + v;]|" > € for any x € V;. Now for z = )" | a;v;, suppose
that ||z|| = |ar| # 0 for some r. Then
Qr—1

Izl = lar| 2o + - + Vet 4 Up et | > elay] = €]l
28 T Ay

We can take thus C'7 = e. ]
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We can also state the results of Theorem 8.5.1 in terms of additive valuation. If v
denotes an additive valuation associated to | - |, then for any finite extension L/K of
degree n, then the unique extension of v is given by

1
vu(e) = o(Np (@),
If v is a normalized discrete valuation, then vy, is also discrete, but not necessarily nor-
malized. Note also that if 2’ is a Galois conjugate of z € L, then vy (z) = vy (z).

8.5.4. Newton Polygon. — Assume now K is a discrete valuation field with normal-
ized additive valuation v. Let K be an algebraic closure of K. For simplicity, we still use
v to denote the unique extension of v to K. Consider a polynomial

f(@) = apa” + an 12"+ +ap € Klz]
with a,, # 0. We define the Newton polygon of f(z), denoted by NP(f(z)), as the lower
convex envelop in R? of the points

{(i,v(a))t < < n}.

Assume that the breaking points of NP(f(x)) are

(QO,to) = (OaU(QO))v (‘hatl)v (q27t2)7 B (qhtr) = (n,v(an)) € z’.

For each j with 1 < j <7, put

qj — gj—1

Then s1 > s9 > -+ > s, and they are negative of the slopes of the Newton polygon of
f(z). We usually call the s;’s slopes of f(z), and call m; := ¢; — gj—1 the multiplicity of
Sj-

Sj:

Proposition 8.5.5. — For each j, f(x) has exactly m; roots in K with valuation 55.

Proof. — Up to dividing f(x) by ag, we may assume that ap = 1. Let a1, - ,a, € K be
such that
flx)=(1—-az)(1 —agx) - (1 —ayz).

Denote by p1 < p2 < -+ < p;, be the distinct valuations of the «;’s, and let m; with

/
1 m; for

j
i
j > 1so that m; = ¢j — ¢j_;. We label the ;s such that, for each j with 1 < j <7/, we
have

1 < j <7’ be the number of o;’s such that v(a;) = p}. Put ¢y =0 and ¢} =

() = pfj for 1+¢j, <i<gj

Then one has

a; = (—1) E Qjy Qg = v * Qe
1<j1<<gi<n
Then, one has

J
U(aq;v) = ’U(OQOQ T aq]') = Zpémz,
l
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and for ¢j_1 < ¢ < gj, one has

j—1

v(as) > Y pymy+ (i — 4j-1)p}-
/=1

Thus, NP(f(x)) has breaking points (g, Zp’zmg), and slopes p;. Note that the roots of
z) are the o 1’s. Hence, their valuations are s; = —p/; for 1 < j < r, and each s; appear

7 J p] J
exactly m; = mj times. O

We have the following immediate

Corollary 8.5.6. — If f(x) is irreducible in Klz|, then NP(f(x)) has only one slope.
Conversely, if f(x) has only one slope s = L with ged(t,n) = 1 and n = deg(f), then
f(z) is irreducible in K|x]. In particular, if f(z) is an Eisenstein polynomial, f(x) is
irreducible.

Proof. — The first part follows from the Proposition 8.5.5 and the fact that all the Galois
conjugate of an element o € K has the same valuation. For the second part, note that
NP(f(x)) is given by the segment y = —sx with 0 < 2 < n by assumption. If f(x) were
not irreducible, then NP(f(z)) will pass other integral points except the two ends. Since
ged(n, t) = 1, this is not the case. For the second part, if f(x) is Eisenstein, then % is the
only slope of f(z); hence f(z) is irreducible. O

Ezxample 8.5.7. — We give an example on the application of Newton polygons to the
irreducibility of rational polynomials. Consider the polynomial

2 $3 .734 LU5 136

x
flz)=14+z+ 5 + 3 + 1 + 3 + 5 € Q[z].

Regarding f(z) as a polynomial in Qs[z], then the 5-adic slopes of f(x) are 1/5 and —1.
Therefore, f(x) is a product of an irreducible polynomial of degree 5 with a factor of degree
1in Qs[z]. If f(z) were not irreducible in Q[z], then the only possible decomposition for
f(x) would be also of such form, that is, f(x) would have a rational root. However, by
checking the 2-adic slopes of Qqx], we see easily that f(z) does not has any root in Q.
We thus conclude that f(x) is irreducible in Q[z].

8.6. Krasner’s Lemma and applications

In this section, let (/|- [) be a complete non-archimedean valuation field. We fix an
algebraic closure K of K, and extend |- | to K by Theorem 8.5.1.

Lemma 8.6.1 (Krasner’s Lemma). — Let o, 3 € K. Assume that
8 —al<|8-4]
for any Galois conjugate 3 of § different from 3. Then one has B € K(«).
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Proof. — By Galois theory, it suffices to show that for any K-automorphism o of K, if
o(a) = a, then o(B8) = 8. Actually, if o is such an automorphism, then

0(8) = Bl = lo(B) — o) + a = B <max{lo(8 - a)|, |8 —al} = [ —al,

where the last step uses the invariance of norms under Galois conjugation. By hypothesis,
one must have o() = . O

Let || - || denote the Gauss norm (8.4.0.1) on K|[x].

Theorem 8.6.2. — Let f(x) € K[z]| an irreducible monic polynomial of degree n. Put

do = min{|a — o[},
a#a’

where a, & run through the distinct roots of f(x). For any real number e with 0 < € < d,
there exists § > 0 satisfying the following property: if g(x) € Klz| is a monic polynomial
of degree n with || f — g|| < §, then there exists an ordering of the roots oy, -+ , oy, of f(x)
and 1, -, Bn of g(x) respectively, such that |a; — B;| < €, and K («a;) = K(f;) as subfields
of K; in particular, g(z) is irreducible.

Proof. — First, note that if h(x) = 2™ + Z?;ol ¢;x™ is a monic polynomial, then its roots
can be bounded above in terms of [|h[|. Actually, if v is aroot of h(z), then by Lemma 8.2.6,
there exists j with 0 < j <n — 1 such that |c;7?| > |y"|. Hence, one obtains
[yl < max |c |1/ (n=3) < max Hh”l/(” 28
0<j<n 0<j<n

Now for any d > 0, if g € K] is a monic polynomial of degree n with [|f — g/ <,
then ||g|| < max{]|f]|,d} is bounded. Hence, if § € K is a root of g(z), then there exists
a constant Cy > 0 (depending only ||f||) such that |3] < Cy. Hence, there exists thus a
constant C7 such that

[118=al=17B)=1f(8) - 9B < Cullf - gll < C16.

It follows that min,{|5 — a|}, where o runs over all roots of f, tends to 0 when § — 0.
Thus, when § is sufficiently small, one has

moién{w —al} <e.

Since € < dp, Lemma 8.2.6 implies that there exists a unique root «(f) of f(x) such that
|a(B) — B] < e. By Krasner’s Lemma 8.6.1, we have a(f) € K(/3). Since a() has degree
n, it follows that K(8) = K(«a(f)) and hence g(x) is irreducible.

It remains to show that, when ¢ is sufficiently small, the map S +— «(f) induces a
bijection between the roots of g(z) and those of f(z). It suffices to show that this map is
injective, i.e. a(f') # a(B) for every root 3’ of g(x) different from 5. Suppose in contrary
that ap = a(8) = a(f’). Then

|8 — B'| <max{|8 —a|, 8" — aol} <e.
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It follows that
(8.6.2.1) g @)= T118-8"1=CTI 1B-8D-18-5D<Ci e
646 BA6 5
On the other hand, there exists a constant Co > 0 (depending only on || f||) such that
9'(8) — /(B < Ca|lf — gll < Ca0.
Note that
[F/(B)] < max{|f'(B) — f'(a(®)],1f (a(®)]},

where the first term in maximum is tending to 0 as § — 0, and |f’(«(8))| is bounded
below independent of 4. Therefore, when ¢ is sufficiently small, we see by Lemma 8.2.6
that

19'(8)] = max{|g'(8) — £'(B)I, 1£(B) — f(aB)] [f ((B))]} = £ ((B))],
which contradicts with (8.6.2.1). This finishes the proof of Theorem 8.6.2.
U

Corollary 8.6.3. — Let L/Q, be a finite extension, then there exists a monic polynomial
g(z) € Qlx] which is irreducible in Qp[z] and L = Qplz]/(g(x)).

Proof. — Assume L = Qp[z]/(f(x)) some monic irreducible polynomial f € Qp[z]. By
Theorem 10.1.5, if g € Q] is sufficiently close to f in the Gauss norm, then Q,[z]/(f(x)) =
Qplz]/(9(x)). O






CHAPTER 9

FINITE EXTENSIONS OF COMPLETE DISCRETE
VALUATION FIELDS

In this chapter, let K be a complete discrete valuation field, and v : K — Z U {0}
be the normalized additive valuation on K. Let Ok denote the valuation ring of K,
mg C Ok the maximal ideal and & = Ok /mg. We fix also a uniformizer wx of K so that
mg = (7). Fix an algebraic closure K of K, and denote still by vx the unique extension
of v to K by Theorem 8.5.1. All finite extensions of K are considered as subfields of K.

If L/K is a finite extension, then L is also a complete discrete valuation field by The-
orem 8.5.1. We denote usually by Oj, the valuation ring of L, by my, its maximal ideal,
and kr, = O /my. Let vy, denote the normalized additive valuation on L.

9.1. Generalities

Let L/K be a finite extension of degree n, and O, denote the integral closure of O in
L. Then Oy is the valuation ring of L for the unique extension of vg to L.

Lemma 9.1.1. — Then ring Oy, is a finite free O -module of rank n = [L : K].

Proof. — For an element z € Oy, denote by Z its image in O /7 Or. Choose a subset
{b; : i € I} of Of, such that (b;)ics is a basis of O, /7 Or, over the field k = O /T Ok.
First, we claim that the b;’s with ¢ € I are linearly independent over K. Indeed, if
> icr @ibi = 0 is non-trivial linear relation with a; € K. Up to multiplying a power of
Tk, we may assume that each a; € Ok and the reductions a; € k are not all zero. Then
Zie I a;b; = 0 is a non-trivial linear relation of the b;’s, which contradicts with the choice of
b;. This proves the claim, which implies immediately that I is a finite set with cardinality
at most n.

Secondly, we prove that the b;’s generate Op, as an Og-module, i.e. O is a free Og-
(0)
c Ok

i

module with basis (b;);cs. Indeed, for any = € Op, there exists a 1 € Of, and a

such that
T = Zago)bi + Tgx,
el
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since (b;)icr form a k-basis of Op /7 Or. Repeating this process, we see that x writes as

x = Z(al(-o) + WKGZ(I) + -+t + Ty,
1€l
Since Of, is complete, we get x € > . ; b;Ox by letting n — +o00. Note that for every
y € L, there exists m > 1 such that 7%y € Or. Therefore, (b;)ics is actually a basis of L

over K. Hence, I has cardinality n.
O

Remark 9.1.2. — In the proof of Lemma 9.1.1, we see that n elements by,--- ,b, € Of,
form a basis of Or, over O if and only if their reduction modulo 7Oy, form a basis of
Or/mkOr, over k. This gives a very convenient way to construct basis of O, over Ok.

9.1.3. Ramification index and residue degree. — By construction, for every z € L,
the unique extension of v to L is given by

v (z) = %UK(NL/K(x))'

Therefore, there exists an integer e = e(L|K) > 1 dividing n such that

VK (LX) = 1Z,
e
or equivalently, e is the integer such that mx = un¢, where 77, denotes a uniformizer of K
(resp. of L), and w is a unit in Or. We call e the ramification index of L/K. If e = 1, we
say that the extension L/K is unramified.
Let kz, be the residue field of Op. Then ky/k is a finite extension (since Op /mxOf, has
dimension n over k by Lemma 9.1.1). We call the integer

F(LIK) = [k : K]

the residue degree of the finite extension L/K. If f(L|K) = 1, we say that L/K is totally
ramified.

Proposition 9.1.4. — (1) We have e(L|K)f(L|K) = n.
(2) If aq,--- o are elements of O, such that their reduction in kr form a basis of kr,
over k, then {omer_l 1 <i< f=f(LIK),1<j<e=e(L|K)} form a basis of O,
over Og.

Proof. — (1) By Lemma 9.1.1, Or /7O, has dimension n over k. On the other hand,
we have a filtration

OL/mxOr = Or/(n}) 2 (m1)/(x) 2 -+ 2 (xpH)/(xE) 2 (0),
where each sub-quotient is one-dimensional kp-vector space. Therefore,

n = dimg(Or/mxOr) = edimy k1, = ef.
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(2) Fix a set of representatives {\; : i € I} C Ok of k. Then S = {Njoj:ie€l,1<j<
f} € Op, form a set of representatives of kz. By Proposition 8.3.1, every element of Of,
writes uniquely as

T = chﬂ'z with ¢, € S.
n>0

In particular, the reductions modulo 7xOr, = 77 Op, of {aiﬂfl 1 <i< fi1<j<e}
generate O /mOp, over k. We conclude by Remark 9.1.2.
O

9.1.5. Ramified extension. — Assume that L/K is totally ramified of degree n. Let
71, denote a uniformizer of L, then one has v (7p) = % If

flz) = Zaixi € Ok|z]
=0

is the monic minimal polynomial of 7y, then vg(a;) > 1 and
vk (ao) = vk (N (L)) = 1,

i.e. f(r)is an Eisenstein polynomial. In particular, Ny /x(7r) is a uniformizer of K. By
Proposition 9.1.4(2), we have Or, = Og/[rr].

9.2. Unramified extensions

If . : L — L' is a K-embedding of two finite extensions of K, then ¢ sends Oy, into Op,
and my, into my, respectively, hence it induces an embedding of residues fields k; < kj,.

Theorem 9.2.1. — Assume k'/k is a finite separable extension. Then the following as-
sertions hold:

(1) There exists an unramified extension K'/K with residue field k'. Moreover, this
extension is unique up to isomorphisms, and it is Galois if and only if k' [k is Galois.
(2) For any finite extension L/K with residue field kr,, there ezists a natural bijection
(induced by reduction) between the set of K-embeddings of K' into L and the set of
k-embeddings of k' into kr. In particular, if k'/k is Galois, we have Gal(K'/K) =
Gal(k'/k).
Proof. — (1) We prove first the existence of K’. We may assume that k' = k[x]/(f(z))
for some irreducible monic polynomial f(z) € k[z] of degree n. Take a monic polynomial
f(z) € Ok[z] of degree n such that f mod mg = f. Then f(x) is necessarily irreducible,
and we claim that K’ = K|[x]/(f(z)) satisfies the required property. Let « denote the
image of x in K’, and @ be its reduction modulo mg. First, we note that v(a) = 0,
i.e. the image of « in the residue filed of Ok is non-zero. Hence, the residue field of K’
contains k[@] = k’. Thus, we get f(K’'|K) > n. By Proposition 9.1.4, we see that kg = £’
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and e(K'|K) = 1. Note that 1,a,---,&" ! are linearly independent over k. For rank
reasons, we have

Ok//(Tk) = Z ka' !
i=1

By Remark 9.1.2, we have Oxr = Og|[a].

(2) We now prove that K’ satisfies the property in (2) for any finite extension L/K.
The rest part of the Theorem will be an easy consequence of this property. Let L/K be as
in Statement (2). Let S(L) denote the set of roots of f(z) in L, and S(kz) the set of roots
of f(z) in kz. Then the set of K-embeddings of K’ = K[a] into L is in natural bijection
with S, while the set of k-embeddings of &’ into kz, is in bijection with S(kr). Since f(x)
is separable, Hensel’s Lemma 8.4.1 implies that the reduction map from S(L) to S(kr) is
bijective. Now the assertion follows immediately. ]

Corollary 9.2.2. — Let L/K be a finite extension such that the residue extension kr,/k
is separable. Then there exists a unique unramified sub-extension Lo/K of L/K with
residue field ki, such that all unramified sub-extension K'/K of L/K is contained in L.
In particular, if L/K is a normal extension, then Ly/K is also normal.

Proof. — Let Lg be the unramified extension of K given by Theorem 9.2.1 with residue
extension kr/k. We see that Ly/K is a sub-extension of L/K by applying the second
part of Theorem 9.2.1 to the identity embedding k; =2 k1. The fact that Lg contains all
unramified sub-extension of L/K also follows easily. O

We call Ly as in Corollary above maximal unramified sub-extension of L. It is clear
that [Lo : K] = f(L|K), and L/Ly is totally ramified of degree e(L|K). Using Lo/ K, the
study of a general finite extension L/K can be reduced to the cases of totally ramified
and unramified cases.

9.3. Different, discriminant and ramification

In this section, let L/K be a finite separable extension such that the residue extension
kr/k is also separable. Denote by 7y, (resp. mx) a uniformizer of L (resp. of K).

9.3.1. Norms of fractional ideals. — Note that both O and O are Dedekind
domains. We have the notion of fractional ideals on L or on K. If a is a fractional ideal
of L, we define

ur(e) = minfur ()} €2,

x

and call it the valuation of a. Then it is clear that a = (m,* (a)) We define the norm of a
as the fractional ideal of K given by

Np/k(a) = (NL/K(WL))UL(a)-

Lemma 9.3.2. — We have v (Np i (a)) = f(L|K)vL(a).
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Proof. — Tt suffices to show that vk (rr) = f(L|K). Let Ly/K denote the maximal
unramified extension of L/K. Then Np g (mr) = Npj/x(Npr,(mr)). Since L/Lg is
totally ramified, we see that N ,; (mz) is a uniformizer of Lo. Thus it suffices to show
that for any uniformizer 7z, of Lo, we have

vk (Nro k(L)) = f(LIK).
As Ly/K is unramified, one has 7y, = mxu for some unit u € (’)ZO. Thus, we get
vk (Npo k(7o) = v(NLo/k (TK)) = f(Lo|K) = f(L|K).
O
9.3.3. Different and discriminant. — The theory of different and discriminant for

number fields has an analog for L/K. Recall that the bilinear form Try /x(zy) on L is
non-degenerate by Theorem 1.2.4. We put

O :={x € L:Tryk(zy) € Ok,Vy € Or}.

Then O7 is a fractional ideal of L. It is clear that Oy C O7. We define the different of
L/K (or of Or/Ok) as the ideal in O,

(9.3.3.1) or k= (07)7"
and the discriminant of L/K (or of Or/Ok) as the ideal in Ox
(9332) DL/K = NL/K(dL/K>

Similar properties as in Section 3.3 hold in our case. In particular, we have
Proposition 9.3.4. — Let K'/K be a sub-extension of L/K. Then we have

O/ = (Ox1/xkOL) - Or /K7,
and

L:K'’
0/ = NK’/K(DL/K’)D[K// 3
Proof. — The proof is exactly the same as Proposition 3.3.5 and Corollary 3.3.6. O

Applying this Proposition with K’ equal to the maximal unramified sub-extension of
L/K, we reduce the problem of computing d;,/x to the case of Lo/K and L/Lo, i.e. it
suffices to treat separately the unramified case and the totally ramified case.

Proposition 9.3.5. — Assume that there exists an o € O, such that O, = Ok|a]. Let
f(z) € Oklx] be the monic minimal polynomial of . Then we have dp/x = (f'(a)).

We start with the following elementary

Lemma 9.3.6 ([Se68], Chap. III, §6 Lemme 2). — If f(x) has degree n, then we

have
T (ai >_ 0 if0<i<n-—2
LIE\f@)) ~ )1 ifi=n—1.

We now return to the proof of Proposition 9.3.5.
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Proof of 9.3.5. — We have to prove that OF = ﬁa)OL, ie. a1/ f (o) for 1 <i < nform

a basis of O} over O. It suffices to show that the matrix a; j = Try /(" 'a? ™1/ f'(a))
is invertible in GL,(Ok). But Lemma 9.3.6 implies that a; ; =0ifi+j <n,and a;; = 1

n(n—1)

ifi4+j=mn+1. A simple computation shows that det(a;;) = (=1)" z . O
Proposition 9.3.7. — (1) Assume that L/K is totally ramified of ramification index
e. Then

UL(gL/K) >e— 17
and the equality holds if and only if e is prime to the characteristic of k.
(2) The finite extension L/K is unramified if and only if v, (61 k) = 0.

Proof. — (1) Let 7y, denote a uniformizer of L, and let
f(x) =2+ ae_12°7 + -+ ag € Okl7]

be the minimal polynomial of 7. By Subsection 9.1.5, f(z) is an Eisenstein polynomial,
Or = Ok|[ryr]. It follows thus from Proposition 9.3.5 that 67,5 = (f'(7r)). Hence, we get

vr,(0r) = v (f' (7)) = vp(enS ™t + ae_1(e — )75 2+ -+ a).
As mi|a; for all 0 < i < e — 1, we have
v (it Yy > i — 14 wg(ia) >e+i—1, for1<i<e-1,

and vy (en$™!) = e — 1+ vy (e). Therefore, we have

vr(f'(nr)) > g}g@{u(mmg—l)} >e— 1.

If e is prime to the residue characteristic, we have vy (e) = 0 and ’UL(z'amiL_l > vL(ewz_l) =
e — 1; hence, vy (f'(w)) = e — 1 by Lemma 8.2.6.

(2) Assume first that L/K is unramified. Then there exists a monic irreducible poly-
nomial f(x) € Oklx] such that its reduction f(x) € k[z] is also irreducible and Of =

Oxk|z]/(f(z)). Let a € O, denote the image of . Then f’(a) # 0, and hence
v (0r/i) = vr(f'(a)) = 0.

Suppose conversely that UL(5L/K) = 0. Let Ly denote the maximal unramified sub-
extension of L/K. By Proposition 9.3.4 and (1), we have

0 > UL(éL/K) = UL(éL/Lo) >e— 1.

Thus, we get e = 1, i.e. L is unramified over K.
O

Definition 9.3.8. — We say the finite extension L/K is tamely ramified if its ramifica-
tion index e(L|K) is prime to the characteristic of k.
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9.4. Galois extension of complete discrete valuation fields

We keep the notation of the previous section. Let L/K be a finite Galois extension of
Galois group G such that the residue extension kz,/k is separable. Denote by Ly/K the
maximal unramified sub-extension. We have seen in Corollary 9.2.2 that Ly/K is a Galois
extension. By Theorem 9.2.1(1), the residue extension kr,/k is also Galois. The restriction
to Lo defines a natural surjective map

(9.4.0.1) G — Gal(Lo/K) = Gal(kp/k),

where the second isomorphism uses Theorem 9.2.1. We define the inertia subgroup of
G, denoted by Iy i or simply I when no confusions arise, as the kernel of this map, or
equivalently

(9.4.0.2) I={c€eG|o(x)=z modmg}.

It is clear that I is normal in G, and I = Gal(L/Lg) by (9.4.0.1).

In the rest of this section, we suppose that L/K is totally ramified, i.e. G = I. Denote
by vz, the normalized additive valuation on L so that vy (L*) = Z.

Lemma 9.4.1. — Let 0 € G. For any integer n > 1, the following two conditions are
equivalent:

(1) For any x € O, we have vy(o(z) —z) >n+1

(2) We have vr(o(nr) — 7)) > n+ 1, for any uniformizer 7y, of L.

Proof. — (1) = (2) is trivial. We prove now that (2) = (1). Indeed, every z € Of, writes

as
“+oo

x = Zaiﬂi,with a; € Ok.
1=0
It follows that

o(z) —w = ai(o(m) — ),
i=1

which is divisible by o(7r) — 7r. Assertion (2) now follows immediately.
O

For any integer n > 1, we define GG,, as the subgroup of ¢ € G which satisfies the
equivalent conditions above. These groups are usually called higher ramification subgroups
of G, and (G is also called the wild inertia subgroup of G. Note that

vr(rlor(z) — @) = v (o(r(x)) — 7(2))

for any 7 € G and = € Or. Hence, G, is a normal subgroup of G by condition 9.4.1(1).
We get thus a decreasing filtration

Go:=G2G12G22--2G, 2Gp41 2+,
called the (lower) ramification filtration on G. We put U = O, and
U ={ueOf Jlu=1 mod 7}
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for an integer n > 1. Then the definition of G,, is equivalent to

G = {0 € G| 2L)
L

™

e UL}

Therefore, the map o — o(7)/7, mod UEH induces a canonical injection

kX if n=0;
9.4.1.1 On : Gn/Gry1 = UpfUpi1 =L ’
( ) /Gri1 /Un+1 {kL —
In particular, the sub-quotient G,,/Gp+1 is abelian.
Proposition 9.4.2. — (1) If the characteristic of kr, is 0, then the wild inertia subgroup

G1 = {1}, and Go/G1 is a finite cyclic group.

(2) If the characteristic of kr, is p > 0, then Gy is a finite group of p-power order, and
Go/Gy is a cyclic group of order prime to p; in particular, the inertia group G is
solvable.

Proof. — Note that k; has no finite subgroups if its characteristic is 0, and any finite
subgroup of kr must have the form (Z/pZ)" if it has characteristic p. The assertions
on GG1 in both (1) and (2) follow immediately. The assertion on Go/G; is an immediate

consequence of the fact that any finite subgroup of k; is cyclic.
O

For more details on the ramification filtration on G, we refer the reader to [Se68, Chap.
Iv].

Example 9.4.3. — Let (,n be a primitive p"-th root of unity. We consider the extension
L = Qp(¢yn) over Qp. Then the minimal polynomial of (,» — 1 over Q) is

@ -1 o oy
f(x)—m—2($+1)

— :L;Pnil(p_l) 4+t p= ;ppnil(p_l) mod D,

which is an Eisenstein polynomial over Q,. Therefore, Q,((y») is totally ramified over Q,
of degree p"~!(p — 1), and we have

1
(9.4.3.1) vp(Cpn — 1) = 1)
In particular, we see that (,» — 1 is a uniformizer of L = Q((y»). Here, v, denotes the
unique extension to L of the usual p-adic valuation on Q.
The Galois group G = Gal(Q,(¢y»)/Q)p) is canonically isomorphic to (Z/p"Z)*, where,
for each @ mod p™ € (Z/p"Z)*, the corresponding element o, € G is defined by o, (¢n) =
(pn- For each integer k with 1 <k <n—1, let G* denote the subgroup of G corresponding
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to those a € (Z/p"Z)* with a =1 mod p¥. We have G* O G¥*1. If 0, € GF\G*T!, then
a writes as a = 1 + p*b mod p” for some b € Z; we have

1

_ a _ b _ _
vp(0a(Gpr — 1) = (G — 1)) = Up(Cpn Gpn) = Up(Cpnfk 1) = (1)’
where an,k = (5:17 is a primitive p"*-th root of unity, and the last equality follows from

(9.4.3.1) with n replaced by n — k. If vy, denotes the normalized additive valuation on L,
then vy, = p"~(p — 1)v,. Hence, it follows that

vp(0a(Cn — 1) = (Gn — 1)) = p¥,  for 0, € GF\GFL.
Thus the lower ramification filtration of G = Gal(L/Q)) is given by
G if u = 0;
Gu=<{GF ifpF1 <u<pr—1for some k with1 <k <n—1;
{1} ifpm <.






CHAPTER 10

APPLICATIONS OF LOCAL METHODS TO NUMBER
FIELDS

10.1. Norms and places on number fields

In this section, we will classify the norms on a number field. We start with Q. Let |- |
denote the usual real norm on Q. For any rational prime p, let |- |, denote the p-adic norm
discussed in Subsection 8.1.4. A fundamental fact for norms on Q is the following

Theorem 10.1.1 (Ostrowski). — The norm |- |, is not equivalent to |- |q if p # q with

p,q < 0o. Every nontriwial norm |- | on Q is equivalent to | - |, for some prime p or for
p = 00.
Proof. — 1If one of p,q is co (and the other one is finite), then it is clear that |- |, is

not equivalent to | - |;. If both p and ¢ are finite primes, then |p|, = p~*

Therefore, |- |, and | - |; can not be equivalent.

Assume first that | - | is archimedean. By Proposition 8.2.5, | - | must be unbounded on
Z. Let ng > 1 be the first integer such that |ng| > 1. Let ¢ € Rs¢ be such that |ng| = n§.
We have to prove that |n| = n® for any positive integer n. Write

and |p|l, = 1.

n=ao+ang+---+asny, with 0<a; <ng,as #0.
Then one has
In] < lao| + lail[nol 4 - - - + las[[nol”
= lao| + [ax[ng + - - - |as|ng’.
By our choice of ng and since a; < ng, we have |a;| < 1. Hence,
In| <1T4+ng+--+ng <ng’(I4+ny "+ +ny“) < Anf,

where A is some constant independent of n. Now replacing n by n™ and taking M-th
radical, one gets

In| < VAne.

Letting N — +o00, one gets |n| < n. We now deduce an inequality in the other direction
as follows. If one writes n in terms of ng as above, one has ngﬂ > n > ng. Thus, the
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trigonometric inequality implies that

I > [no**t = (Ing* = nl) > ng® ™ — (g™t —n)e.
Since
(n(S)—i-l . n)c < (n8+1 . no)c _ n8(3+1)(1 . ni)c7
we get, "
) 2 1= (1= ) = A

with A’=1-(1- nio)c Replacing n by n™ and taking M-th root, we get
In| > VAnE.

Letting M — 400, we get |n| > n®. We conclude finally that |n| = n€if |-| is archimedean.

Now assume that | - | is non-archimedean. Then we have |n| < 1 for all n € Z. Let
p C Z be the subset consisting of n € Z with |n| < 1. Then one sees easily that p is a
prime ideal, and p # 0 since | - | is non-trivial. Therefore, there exists a prime number p
such that p = (p). By Proposition 8.2.13, | - | is equivalent to | - |,. O

Definition 10.1.2. — Let K be a number field. A place v of K is an equivalence class
of norms on K. If these norms are archimedean (resp. non-archimedean), we say the place
v is archimedean (resp. non-archimedean).

By Theorem 10.1.1 the set of places of Q is {rational primes } U {oo}. This result can
be generalized to any number field.

10.1.3. Places of an arbitrary number field. — Let K be a number field. Let o;
with 1 < 4 < 71 denote the real embeddings of K, and o, 4,045 with 1 < j < 19
be the non-real complex embeddings of K. Then for each complex embedding o; with
1 <4 <7y +ry, we have a norm |- |, on K given by

|#]o; = |oi(z)]c.
On the other hand, for each prime ideal p of the integral ring O of K, we have an additive

valuation v, on K, which sends each x € K to the exponent of p in the factorization of
(z). We define the normalized p-norm on K by

[l = N(p) ).

Theorem 10.1.4. — (1) Any two of the absolute values of | - |, forv € {o; |1 <i <
r1 4 r2} U{prime ideals of Ok} are not equivalent to each other.
(2) Every absolute value on K is equivalent to some |- |, with 1 < i <1y +1rg or|-|p
for a prime ideal p of Ok .

Proof. — 1t is obvious that a archimedean absolute value | - |5, is not equivalent to any
| - |p, which is non-archimedean. It is also clear that |- |, is not equivalent to |- |q if p # q,
since they induces different prime ideals in Og. To prove that |- |5, is not equivalent to
| - |o; for i # j with 1 <4, j <71 + 7o, we recall that, under the map

A K — R xC
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defined by A(z) = (0i(2))1<i<r,+ry, the image of Ok is a (full) lattice in R™ x C". Then
A(K) is dense in R™ x C™. In particular, for any ¢ with 1 < i < 71 + ro, there exists
n

r; € K such that |7,, < 1 and |z;|s; > 1 for any j # i. Hence, the sequence (z}')n>1

converge to 0 for | - |, but diverges for | -|,, with j # i. Hence, |- |5, is not equivalent to

| ’ |U~-

Silppose now | - | is an absolute value on K, we have to prove that | - | is equivalent to
some |- |, or to some |- |,. Suppose first that |- | is non-archimedean. Since O is integral
over Z, we have |z| <1 for all x € Og. Let p be the subset of x € O such that |z| < 1.
One verifies easily that p is a prime ideal of Ok. Then Ok is the valuation ring of K for
| - |, which coincides that of K for |- |,. By Proposition 8.2.13, | - | is equivalent to | - [,.

Assume now that | - | is archimedean. Let K, denote the completion of K under |- |.
Then K, is a finite extension of R, which is the completion of Q at its unique infinite
place. Thus, K, is either R or C. In any case, the embedding K <— K, is one of ¢; or the
complex conjugate of some ;.

O

Theorem 10.1.4 says that the non-archimedean (or finite) places of K are in natural
bijection with non-zero prime ideals of Ok, and the archimedean (or infinite) places of
K are in natural bijection with the orbit of complex conjugate on the set of complex
embeddings of K.

Theorem 10.1.5. — Letvy,--- ,v, be distinct places of K. Then the diagonal embedding
T
K <[] Kv,.
i=1

has dense image, where K,, denotes the completion of K at v;.

Proof. — Step 1: Since K is dense in each K, it suffices to prove that, given z1,--- , 2, €
K and € > 0, there exists £ € K such that

(10.1.5.1) 1€ — @iy, <e.

We claim that for each ¢ with 1 < ¢ < r and any ¢ > 0, there exists a & € K such that
& — 1l <€ |Gl <0, for j £i.

Assuming the claim for a moment, then £ =Y., &, satisfies

1€ = ilo, = |2 (& — 1) + Y 255,
i#i

T
< Jailud + D a6 = 6Ll
ji j=1

One can choose appropriate ¢ so that (10.1.5.1) is satisfied. It remains to prove the claim.
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Step 2. The proof of the claim can be reduced to showing that for any ¢ with 1 <4 <1,

there exists £ € K such that |¢|,;, <1 for all j # 4, and [¢],, > 1. Since then, we have
e 1 e

1)y, = |——=;, =2 0, |———

|1+€n "Uz |1+é—n‘vz ’1+£n

as n — +oo. We may assume that ¢ = 1, and proceed by induction on r. For r = 2,

the existence of £ follows from the non-equivalence of v; and vs. Assume now r > 2.

By induction hypothesis, there exists { € K such that |{|,, > 1 and [¢],; < 1 for j =

2,---,r—1. If |£],, < 1, then the assertion is proved. Consider the cases |{],, > 1. As

v; and v, are not equivalent, there exists o € K such that |a|,, > 1 and |af,, < 1. If

|€lv, = 1, then Vo for sufficiently large N will answer the question. If |¢[,, > 1, we can

take ffg\, for N sufficiently. O

lo; = 0 forall j #i

10.2. Tensor product and decomposition of primes

Let L/K be a finite extension of number fields. Let L, be the completion of L at a
place, and K, be the closure of K in L,,. Then K, is the completion of K at a place v,
and L,,/K, is a finite extension. We write w|v.

Assume now w is a non-archimedean place. Let B, C Op denote the prime ideal
given by the place w. Then the prime ideal of Ok corresponding to v is p, = Py N Ok.
Recall that we defined in Section 3.2 the ramification index e(*By|p,) and the residue
degree f(Pw|py). On the other hand, we defined in Subsection 9.1.3 the ramification
index e(Ly|K,) and f(Ly|Ky). Let Ok, be the valuation ring of K, and p, C O, be the
maximal ideal, and similar notation for O, and ‘]A:s‘w. Then k, := Ok, /pv = Ok /py is
stable under completion, and similarly for the residue field k,, of L,,. It follows immediately
that f(Lw|Ky) = f(Buw|ps). Besides, if m, (resp. m,) is a uniformizer of Ok, (resp. of
Orsp., ), then it is also a uniformizer of K, (resp. L.). Let v, denote the normalized
additive valuation on L,,. Then we have

e(Buwlpo) = vr, (o) = e(Lu|Ky).
In the sequel, we will denote simply e(w|v) = e(L|K,) and f(wlv) = f(Ly|Ky).

Theorem 10.2.1. — Given a place v of K, we have a canonical isomorphism

Loy K, %HLw.

wlv

Proof. — Let f(z) € K[x] be an irreducible polynomial such that L = Klz|/(f(zx)).
Assume that

J(@) = [ 9ite)
=1

is a decomposition of f(z) into irreducible factors in K,[z]. Then we have

Lok Ky = Kylz]/(f(x)) = HKv[x]/(gz'(%’))-
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Each L; := K,[z]/(gi(z)) is a finite extension of K, hence a complete discrete valuation
ring. Note that L is dense in L ® ¢ K, hence in each factor L;. Hence, L; is the complete
of L at a finite place w; above v. Note that any two factors g;(x) and g;(z) are coprime
with each other, so L; # L;. It follows thus that we have an injection:

T
Lok Ky = [[Li = [ Lw-
=1

wlv

On the other hand, if L,, is the completion of L at a finite place w dividing v. Then by
the universal property of L ® K,, we have a homomorphism of K-algebras

L®yg Ky — Ly,

which is automatically continuous if we equip both sides the canonical topology for finite
dimensional K,-vector space. Since L is dense in L,, and L Qg K, is complete as a finite
dimensional K,-vector space (c.f. Lemma 8.5.3 in the non-archimedean case), the map
L ®g K, — L, must be surjective. This shows that L,, is a quotient of L ® K, hence
equals to one of L;.

Now assume that v is non-archimedean. Note that the valuation ring Ok, is the com-
pletion of Ok with respect to the norm |- |,. It follows that the residue field of K, is
exactly k, := O /p,; similarly the residue field of Ly, is ky, := O /By for w|v. It is now
obvious that f(Puwlpv) = f(Lw|Ky).

O

Remark 10.2.2. — Theorem 10.2.1 gives another proof of the fundamental equality
Proposition 3.2.2(2):

[L: K] =dimg, (L ®k K,) = Y [Luw: K] =Y e(wlv) f(wlv),

wlv wlv

where the last equality uses Proposition 9.1.4(1).
Corollary 10.2.3. — Let v be a place of K. Then for any x € L, we have
Try k(r) = ZTer/Kv (z), Np/g(z)= HNLM/KU ().

wlv wlv

Proof. — Indeed, Try, /i () equals to the trace of the K-linear endomorphism on L&k K,
given by the multiplication by z ® 1. According to Theorem 10.2.1, this endomorphism
is the direct sum of the multiplication by = on L,, for all w|v. Now the Corollary follows
immediately. O

Example 10.2.4. — Consider the polynomial
22 23 2t ad
=1 T .
f@)=1+e+ 5+ =+ +F €Ql
By looking at the 5-adic Newton polygon of f(x), one sees easily that f(z) is irreducible.
The 3-adic Newton polygon of f(x) have slopes 1/3 with multiplicity 3 and —1/2 with

multiplicity two. So f(z) has two irreducible factors ¢g(z) and h(z) in Qs[x] with degree
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3 and 2 respectively, and all the roots of g(x) have 3-adic valuation 1/3 and those of h(x)
have valuation —1/2. It follows by Theorem 10.2.1 that we have decomposition of primes
in L:

301 = pip2
with f(p1]3) = f(p2|3) =1 and e(p1]3) = 3 and e(p2|3) = 2.

10.3. Product formula

To state the result, we need to modify slightly the norm at a complex place. Let K be

a number field, and v be a place of K. We define the normalized norm | - |, of K at v as
1

N(p)o» ™)

2]y := { |o(x)|g  if v is given by a real embedding o;

if v = p is non-archimedean;

lo(z)|%  if v is given by a pair of complex embeddings o, 5.
Lemma 10.3.1. — For a place p < 0o of Q and any x € K, we have
Ng/o(x)lp = H ]y
vlp

Proof. — By Corollary 10.2.3, we have
INkjo@)lp = [ [ Nk, /g, @)l
vlp

To finish the proof, it suffices to show that [Ny, g, (7)[, = |z[, for any x € K. If v is
an infinite place, then Q. = R and K, is either R or C; the assertion is obvious by our
definition of | - |,. If p is finite, then by Lemma 9.3.2, we have

up(Nk, /0, (@) = f(vlp)vp, (z),
where vy, denotes the normalized additive valuation on K. Thus, it follows that

2], = N;:va” (z) _ p*f(v\P)Upv (x) — p—vp(NKv/Qp(iv)) _ ’NKv/Qp (z)],-

O
Proposition 10.3.2 (Product formula). — For every x € K, we have
H |$|v = 17
v
where v runs through all places of K, and |- |, is the normalized norm of K at v.
Proof. — We treat first the case K = Q. Since the formula is multiplicative in x, it suffices
to prove the formula for x = —1 and & = p with p a prime. The case is trivial for z = —1.

When x = p, we have

H |y = [plp - [Ploc = 1.

<00
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For general number field K, it follows from Lemma 10.3.1 that

[Tlzh = TT WNjo@)l, =1.

v p<oo

10.4. Comparison of local and global Galois groups

Let L/K be a finite Galois extension of number fields with Galois group G. Let v be a
finite place of K, and w be a place of L above v. Let L, (resp. K,) denote the completion
of L at w (resp K at v). The natural inclusion L — L,, induces a morphism of Galois
group

iw : Gal(Ly/Ky) — Gal(L/K).
Let B,, denote the prime ideal of Oy, given by w, and p, be the prime ideal of O for v.
Recall that we defined in 3.4.3 the decomposition subgroup D, := D(Buy|p,) € G. The
following Proposition is fundamental for applying local methods to study the Galois group
of number fields.

Proposition 10.4.1. — The morphism i,, induces an isomorphism
Gal(Ly/Ky) = Dy,.

Proof. — Note first that i,, is injective, because L is dense in L,,. Let w = w1,--- ,wy be
the primes of L above v. Then G acts transitive on the set {wy,- - ,wy}, and by definition,
D, is the stabilizer of w. Let ¢ € Gal(L,/K,). Denote by my, the maximal ideal of
Or,- Then o clearly stabilizes my,,, and i,(0) stabilizes Op. Since O Nmp, = Py, we
see that i, (o) € Dy. This shows that the image of 4,, lies in D,,. On the other hand, if
e = e(w|v) and f = f(w|v) denote the ramification and residue degree respectively, then
both D,, and Gal(L,|K,) have cardinality ef. Hence, i,, induces an isomorphism between
Gal(Ly/Ky) and Dy,. O

Proposition 10.4.1 can be used to determine the Galois group of an irreducible polyno-
mial over Q.

Ezxzample 10.4.2. — Consider the polynomial f(x) = 2° — 2 — 1 € Q[x]. Since f(z) is
irreducible modulo 5, we see that f(x) is irreducible over Q. We can interested in finding
the Galois group G of f(z). Let K = Q[z]/(f(x)), and L be the Galois closure of K.
Then G = Gal(L/Q) and can be viewed as a subgroup of the permutation group &s.
Since 5|[L : Q], G must contain an element of order 5, which is necessarily a 5-cycle. On
the other hand, we have the decomposition

fx)=(2®+z4+1)(2z*>+22+1) mod 2.
By Hensel’'s Lemma 8.4.1, f(x) = g(x)h(z) in Q2[x], where g(z) and h(z) are monic
irreducible polynomials in Zs[z] lifting 22 + 2 + 1 and 3 + 22 + 1. Hence, by the proof
of Theorem 10.2.1, the prime 2 is unramified in K and splits into two places v; and vy in

K with residue degrees 2 and 3 respectively. Let w be a place of L above vy. Then Ly, is
the unique unramified extension of degree 6 over Qy, and has residue degree 2 over K,,.
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Let o € G denote the Frobenius element at w. Then o3 generates Gal(L,,/K,, ). If a1, as
denote the two roots of g(x) and as, ay, as are the roots of h(z), then o3 fixes az, a4, as
and interchanges «; and ag. Hence, o is a transposition in &5. It is well known that
a subgroup of &5 containing a 5-cycle and a transposition is necessarily ©j itself. We
conclude that G = &5.

10.5. Local and global different

Let L/K be a finite extension of number fields, v be a finite place of K, and p, C Ok
be the prime ideal given by v. Denote by K, the completion of K at v. We have the
following series of Dedekind domains:

Ok Ok p, > Ok, = lim, (Oxp, /piOkp,) = Ok,

where Ok (resp. Ok, ) denote the ring of integers of K (resp. K,), Ok p, is the localization
of Ok at p,, and @K,pu means the completion of Ok, with respect to its maximal ideal.

Put S, = Og\p,. This is a multiplicative subset of O or Or. We put Or,, =
S0, =0, - Ok, For any fractional ideal I of L, we put

I, :=10r,, :{a:EL|x:gforsomeaelandse&,.}
s
jpv = 1&1 <ng/pglpv>
n

Lemma 10.5.1. — If1 =[], B is the prime decomposition of I, where w runs through
finite places of L, then we have a canonical isomorphism

T ~J AG,w
Ipv = Hmw )
wlv

where ‘:Bw denotes the maximal ideal of Or,,. In particular, we have

Oy, =[] Oc..

wlv
Proof. — We have

L, = [[(BuOLp,)™

wlv

polpn = H (B OLp,)-

wlv
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Assume that p,Orp, = [, ( dwio, p,)- Then it follows that
1# m (I, /pylp,) = L m (R Orp, /B 10 0L,,)
=~ [ tim (B8 Orp, /PO, ) = T Bar

n

wlv wlv

]
Theorem 10.5.2. — Let 01/ be the relative different of L/K (cf. Definition 3.5.3),

and for each place w dividing v, let 61, /, be the different of the extension Ly, /K,. Then
we have a canonical isomorphism

O K = H 0Ly /K,

wlv

Proof. — By definition, 07,/ is the ideal of Of, such that the trace map induces a perfect
pairing

TrL/K : O % (52/1]( — Ok.
Here, “perfect” means that

5L/1K ={yelL| TrL/K(xy) € OgVz € Or},

or equivalently the map y + (z + Trp i (2y)) induces an isomorphism of Or-modules

6L/1K = Homp, (Or, Ok).
Passing to localization at p,, we get a pairing

(10.5.2.1) OL,pU X 5 — OL,FU'

L/K.p,
We claim that this pairing is still perfect. Indeed, it is clear that

Conversely, given an element y € L such that Trp /x(zy) € Ok, for all z € Opy,, we
need to prove that y € 5L/Kp , that is there exists s € S, = Ok \py such that sy € 5L/K
Let {1, -+ ,z,} be a set of generators of O, as an Og-module. Then they also form a

set of generators of O, over Ok, . Let
zi = Trpx(2iy) € Ok p, -

Then exists s; € S such that s;z € Og. Put s = [[;_; s;, then Trr i (syzi) € Ok for all

1. It follows that sy € Og. This finishes the proof of the claim.
Taking completion of (10.5.2.1), we get a paring

(10.5.2.2) Trr/x : Orp, X 07 ey, = Ok, = Ok

"
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If or/x = I, ‘va((sL/K is the prime decomposition of d;,/x for some vy, (d1,/x) € Z, then
by Lemma 10.5.1 and Corollary 10.2.3, (10.5.2.2) is canonically isomorphic to the pairing

Z’I‘I.Lw/Kv : HOLw X Hsﬁ;vw(éL/K) — OKU

w|v w|v wlv

To finish the proof of the Theorem, it suffices to show that (10.5.2.2) is perfect, since it

—vw (8 . .. . .
will imply that ot Lo/ Ko ‘Bwv L/ K). We note first that O, is a principal ideal domain,
and every finite generated torsion free module over Ok, is free. Let (o, -, ;) and
(B1,- -+, Bn) be respectively a basis of Op,,, and 51;/1K,pv over Ok p,. Let (o -+, ) be

the basis of Homo,, (OLyp,, OKkyp,). o : (52/1K p, = Homoy , (Orp,, Ok p,) denotes the
map induced by the pairing (10.5.2.1), then one has

) =D Trp i (iBy)ay

Therefore, the perfectness of (10.5.2.1) is equivalent to det(Tr 1k (i) € Ok py- Now,

we view (oy)i<i<n and (5j)i<j<n as basis of OLp and 07! over O, respectively

L/K py
via the canonical injection from the non-completed modules to the completed ones, then
similar arguments show that det(Trrx (cif;)) € Ok, C O p, implies that (10.5.2.2) is

perfect. O

10.6. Hermite-Minkowski’s finitness theorem

In this section, we give a proof of Hermite-Minkowski’s finiteness theorem using local
methods. We start with a finiteness theorem on local fields.

Theorem 10.6.1. — Let F be a finite extension of Q,. Given an integer n € Z~g, there
exists only finitely many extensions of F of degree n.

Proof. — Since F' has a unique unramified extension of degree d for each positive integer d
dividing n, it suffices to prove that there exist only finitely many totally ramified extension
of F of degree n. Let mr be a uniformizer of F', and put

S={f(x)=a"+ap_17pa" ' + -+ 7pag | a; € Op for i # 0,a9 € O}}.

Then we have an isomorphism of topological spaces
S =0k x OF.

Then a totally extension of F' of degree n is generated by a root of f(x) with f(z) € S. By
Theorem 8.6.2, for each f(z) € S, there exists € > 0 such that F[z]/(f(z)) & F|x]/(g (:E))
for any g € S Wlth ||f — gll < e. Such g’s form an open neighborhood U(f,¢€) of f(z) in
Then all such U(f,¢€) cover the space S. Since S is compact, finitely many of U(f,¢€), say
U(fi,e;) with 1 <4 < r, cover S. Then every totally ramified extension of F' of degree n

is isomorphic to one of F[z]/(fi(x))’s
U
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The following Corollary is immediate from Theorem 10.6.1.

Corollary 10.6.2. — Let E/F be a finite extension of degree n, and ve(dg p) be the

integer such that dg/p = (WEE(JE/F)). Then vp(dg/p) is bounded above in terms of n.

Theorem 10.6.3 (Hermite-Minkowski). — Let K be a number field, S be a finite set
of places of K. Then for a fixed integer n € Z~q, there exist only finitely many extensions
of K unramified outside S of degree n.

Proof. — By Corollary 4.1.6, it suffices to show that the disriminant of any extension
L/K of degree n and unramified outside S is bounded above in terms of n and S. Indeed,
if L/K is such an extension, it follows from Corollary 3.3.6 that

1ALl = |Ag[FFINg o(Discr i) = |Ax[FFINg (01 x),

where Ay, and Ag denote respectively the discriminant of L and K. By assumption, the
order of 7/ at a finite place w of L is greater than 0 only if w divides a place v € S. By
Theorem 10.5.2 and Corollary 10.6.2, the exponent of B, in dy,/k is equal to v, (31, /K, );
and is bounded above in terms of n. Hence, Ny, o(dr k) is bounded above in terms of n
and S. This finishes the proof. O
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