
DIVERGENT SERIES AND L-FUNCTIONS

ASVIN GOTHANDARAMAN

ABSTRACT. The goal of this note is to develop a theory of summing divergent series that is
applicable to the Riemann zeta function and Dirichlet L-functions. In particular, I will prove
the rationality of the values of Dirichlet L-functions at negative integers, their compatibility
with the Galois action, generalized Kummer congruences for Dirichlet L-functions and other
p-adic information on these values and finally compute the values explicitly in terms of
generalized Bernoulli numbers.
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The results in this paper are mostly based off of lectures notes of Prof. Akshay Venkatesh[1].

The only completely original section is the one on the computation of special values in
terms of generalized Bernoulli numbers. Parts of the section on Kummer congruences are
also original as well as the subsection on compatibility with Galois action.

1. INTRODUCTION

Recall the standard definitions:

ζ(s) =
∑
n≥1

1

ns

[1]Section 3, The Analytic Class Number Formula and L-functions
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and for a Dirichlet character χ of conductor f :

L(s, χ) =
∑
n≥1

χ(n)

ns

both of which are defined for Re(s) > 1 and can be meromorphically continued to the
entire real plane (except possible a pole at s = 1.

In particular, the value of the series at negative integers is computed by the often opaque
process of analytic continuation and results at these points are established by analytic con-
tinuation.

However, it turns out that L-function have striking arithmetic properties at negative inte-
gers compared to the positive integers. For instance, ζ(−k) ∈ Q for all k ≥ 0 while the
values at positive integers have a transcendental factor.

We would like to develop tools to work with the negative integers directly. For instance,
we would like to justify the following ”proof” of the Kummer congruences rigorously.

Theorem 1 (Kummer Congruence:). Suppose that k, l are two positive integers such that k ≡ l
(mod p− 1) and neither one is congruent to 1. Then, ζ(−k), ζ(−l) are in Zp and ζ(−k) ≡ ζ(−l)
(mod p).

Proof. Let us suppose that we can treat ζ(−k) = 1k + 2k . . . as an actual convergent series.
Then we might attempt the following proof:

Under the conditions on k, l, nk ≡ nl (mod p) for all p and so their summations are also
congruent! �

Clearly this proof is completely bogus in the standard theory of series for many reasons.
Nevertheless, the theory we develop will allow us to make this argument rigorous with
very little modifications! Even more, it will generalize naturally to all the Dirichlet L-series.

Similarly, consider the following evaluation of ζ(−k):

Write out each ”series expansion” as

ζ(0)
t0

0!
” = ” 10

t0

0!
+20

t0

0!
+ 30

t0

0!
+ . . .

ζ(1)
t1

1!
” = ” 11

t1

1!
!+21

t1

1!
+ 31

t1

1!
+ . . .

ζ(2)
t2

2!
” = ” 12

t2

2!
+22

t2

2!
+ 32

t2

2!
+ . . .

...

ζ(3)
t3

3!
” = ” 1k

tk

k!
+2k

tk

k!
+ 3k

tk

k!
+ . . .

...

and instead of summing horizontally, let us sum vertically first. The left hand side is the
exponential generating series for ζ(k), let us call it f(t). The right hand side sums to ent for
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n = 1, 2 . . . . That is, we get:∑
k≥0

ζ(k)
tk

k!
” = ”et + e2t + e3t + . . . ” = ”

et

1− et
.

The right hand side is the exponential generating series for the Bernoulli numbers (with
some minor changes) and on equating the coefficients of tk, one obtains ζ(−k) = −Bk+1/(k+
1) which is the right answer! Once again, our theory will make this rigorous and even ex-
tend the method to all Dirichlet L-functions.

Let me now describe a brief, imprecise outline of the note:

First, we will define an ”abstract sequence space” over a field K which is simply the set of
sequences that eventually satisfy a linear recurrence. In particular, this contains all finite
sequences.

We would like to define a linear functional on this space that extends the usual summa-
tion on finite sequences while maintaining some properties of the usual summations. In
particular, we will want our summation to be invariant under shifting all the terms to the
right and a ”dilation” operator, to be defined later. In fact, we will show that under mild
conditions, there is exactly one such functional.

Now, suppose that our ground field is C. For a sequence n −→ f(n) in our abstract se-
quence space, the zeta function is defined by:

ζf (n) =
∑
n≥1

f(n)

ns

for Re(s)� 0. I will show that there is a meromorphic continuation to the entire plane and
that s = 0 is not a pole. Thus, we can define an operator by f −→ ζf (0).

We will show that this operator satisfies the invariance properties we required of our ab-
stract summation operator. Therefore, it has to match our previously defined operator.
This done, we will forget entirely about analytic continuation and deal purely with our
abstractly defined operator and make the above arguments rigorous rather easily.

2. ABSTRACT SEQUENCE SPACES

We will define a vector space of sequences over which it will be possible to define a unique
summation operator that extends the usual summation for finite sequences. The definition
is as follows:

Fix a field k throughout unless otherwise specified. In this article, N will always refer to
the set {1, 2, 3 . . . }.

Definition 1. Let Y c be the set of sequences with compact support. That is, all but finitely many
terms are zero.
Then, define X to be the set of sequences that satisfy a linear recurrence eventually with a finite
number of initial values. That is, f ∈ X if and only if there exist a0, a1, . . . , ar ∈ k such that

a0f(n) + a1f(n− 1) + · · ·+ arf(n− r) = 0 for all n� 0.

All the sequences we are interested in will be of this form.

We will eventually define an extension of Σ to all of X . However, first let us provide an
alternate characterization for sequences that satisfy a linear recurrence. The following is
well known:
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Theorem 2. A sequence f : N −→ k satisfies a linear recurrence precisely when it is a linear
combination of sequences of the form αnp(n) for α ∈ k and p(n) ∈ k[x] with the first r values
being arbitrary. Furthermore, if f satisfies the linear recurrence:

a0f(n) + a1f(n− 1) + · · ·+ arf(n− r),

then the α that appear in the linear combination are all exactly the roots of

a(t) = a0t
r + a1t

r−1 + · · ·+ ar = 0

and the degree of the polynomial p(n) associated to such an α is equal to the multiplicity of α in
a(t) minus 1.

Definition 2. Let us then define Y to be the space of sequence of the above form taking values in k.
That is. Y consists of sequences of the form:

f(n) =
∑
α,k

ckα
nnk ∈ k for α ∈ k×, ck ∈ k× and k ∈ N.

For f ∈ X , we will have such a decomposition (in a unique way) for large n. The α
that appear will be called the exponents of f and the variable α will be reserved for this
purpose.

An important consequence of the theorem is:

Lemma 3. The sum and product of sequences in X is again part of X . That is, for f, g ∈ X the
sequences n −→ f(n) + g(n) and n −→ f(n)g(n) are both again in X .

It will be convenient to break X up into into the following subspaces.

Definition 3. Let us define Y α to be the vector space of sequences of the form αnp(n) for p(n) ∈
k[x] and Y 6=1 to be the complement of Y 1. Similarly, we can define Xα = Y α + Y c.

2.1. Operators on Sequences. We will also make heavy use of the following two endo-
morphisms of X :

Define S : X −→ X by S[f ](n) = f(n − 1) for n ≥ 2 and S[f ](1) = 0. This is the ”shift by
one to the right” operator. S[f ] is in X since it satisfies the same eventual recurrence as f .

Next, for m ∈ N, define Dm : X −→ X by Dm[f ](n) = f(n/m) if m|n and 0 otherwise.
This is the dilation operator and it simply stretches our sequence out. It is not hard to see
that Dm[f ] also eventually satisfies a linear recurrence.

What will be crucially important for us is that for any f ∈ Y , the span of f under S is finite
dimensional. This is in fact equivalent to saying that f satisfies a linear recurrence.

Equivalently, for any f ∈ X , we can find a polynomial Pf ∈ k[x] such that Pf (S)[f ] ∈ Y c.

3. EXTENDING THE SUMMATION OPERATOR

Finally, we are in a position to realize our goal of defining a summation for all sequences
in X . The main theorem of this section is the following:

Theorem 4. There is a unique linear functional Σ : X −→ k such that:

(1) The restriction Σ : Y c −→ k is the usual summation operator on finite sequences.
(2) For f ∈ Y 6=1, the operator is invariant under S. That is, Σ(S[f ]) = Σ(f).
(3) For all f ∈ X andm ∈ N, the operator is invariant underDm. That is, Σ(Dm[f ]) = Σ(f).

4



In fact, as we will see the proof of this theorem will be readily adapted to prove stronger
versions of this theorem as we need. See the remark following the proof for stronger ver-
sions of this theorem.

The idea of the proof is simple. The invariance under the various operators will force
uniqueness. For instance, suppose f ∈ Y α and α 6= 1. Recall that the orbit of f under S is
finite modulo Y c. In other words, for the characteristic polynomial Pf (X) ∈ k[X] of f , we
have:

Pf (S)[f ] = f c for some f c ∈ Y c.

Applying Σ to both sides and using the invariance under Σ, we are forced into:

Pf (1)(Σ(f)) = Σ(f c)

and since the eigenvalues α of f are not 1, Pf (1) 6= 0 and this determines the value of Σ(f).
A similar argument holds for f ∈ Y 1 using Dm instead.

Of course, we still have to establish that this defines a linear functional. Instead, we will
take a different approach that proves uniqueness and existence simultaneously. We will
first extend the operator to X 6=1 from Y c and then use this to further extend to all of X .

Proof. (2) Note that an S-invariant functional on a vector space W is the same as a func-
tional on W/(S − 1)W . However, I claim that the inclusion Y c −→ Xα for α 6= 1 induces
an isomorphism Y c/(S − 1)Y c ∼= Xα/(S − 1)Xα. This is clearly sufficient to prove (2).

Consider the following diagram:

0 Y c Xα Xα/Y c 0

0 Y c Xα Xα/Y c 0

Y c/(S − 1)Y c Xα/(S − 1)Xα

(S−1) (S−1) ∼=

The final vertical arrow is an isomorphism because the eigenvalues of (S − 1) are all non
zero. Applying the snake lemma induces the required isomorphism Y c/(S − 1)Y c ∼=
Xα/(S − 1)Xα.

(3) We will follow the same strategy, only making the replacements (Y c, Xα, S − 1) −→
(X 6=1, X,Dl − 1) for some prime l 6= 0 ∈ k.
First, let us prove that Σ(Dm[f ]) = Σ(f) for f ∈ Xα, α 6= 1. This follows because SmDm =
DmS. We know that there exists f c ∈ Y c such that (S − α)n[f ] = f c and therefore Σ(f) =
Σ(f c)/(1− α)n.

On the other hand:

Dm[f c] = Dm(S − 1)n[f ] = (Sm − 1)n[Dm[f ]]

and since Σ is Dm invariant on Y c, Σ(Dm[f ]) = Σ(f c)/(1 − α)n and Σ is therefore Dm

invariant on X 6=1.

Note that X/X 6=1 can be identified with the space of all polynomials. This vector space
clearly has the basis n, n2, . . . where nk stands for the sequence f(n) = nk. To mimic the
previous proof, we need to prove that Dm does not have eigenvalue 1 on this vector space.
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However, this follows from the following observation:

Dm[nk] =
1 + ζnl + ζ2nl + · · ·+ ζ

(l−1)n
l

l

(
n

l

)k
≡ nk

lk+1
(mod X 6=1).

Therefore, the nk form a basis of eigenvectors with eigenvalues l−(k+1) 6= 1. After this step,
the rest of the proof proceeds exactly as before after making the replacements.

�

Remark 5. A couple of remarks about strengthening the previous theorem:

(1) Note that, even if we only insist on S-invariance, there is only a unique extension of Σ :
Xα −→ k for each α 6= 1.

(2) Second, to extend the operator to X1, we only need to first extend Σ to Y |α|=1 as can be
seen by examining the proof.

(3) As noted before the proof, for f ∈ X 6=1, the value of Σ[f ] is Σ(f c)/Pf (1) where f c ∈ Y c

and Pf is the characteristic polynomial of S on the span of f in X/Y c.

All three of these remarks will be used in what follows.

4. SOME EXAMPLES

Let us see how we can use these ideas to compute Σ(f) for a few sequences.

Example 1. Let f(n) = αn forα 6= 1. This is the analogue of the usual geometric seriesα+α2+. . .
and we should expect the same answer. Indeed:

Note that S[f ](n) = αn−1 for n ≥ 2. Therefore, S[f ](n) = α−1f(n) for n ≥ 2. Let g =
(α, 0, 0, . . . ) = f − αS[f ] Since Σ is invariant under S in this case, we have:

α = Σ(g) = (1− α)Σ(f)

and so Σ(f) = α/(1− α)

Example 2. Now let f(n) = 1 be constant. In this case, we should expect the value to be equal to
ζ(0). However, in this case, we cannot use the translation operator since α = 1. Instead, let us use
D2.
Let g = 2D2[f ]. This sequence goes as 0, 2, 0, 2, 0, 2 . . . . Therefore, f(n) − g(n) = −(−1)n and
we are in the case of our previous example. Applying Σ and using invariance, we have:

Σ(f)− 2Σ(f) = 1/2 =⇒ Σ(f) = −1/2

and we see that Σ(f) is indeed equal to ζ(0).

Example 3. Now let f(n) = n. In this case, we should expect the value to be equal to ζ(1). We
will need to use D2 once again.

Let g = D2[f ] = 1+(−1)n
2

n
2 . This is because 1+(−1)n

2 is 0 when n is odd and 1 when n is even. We
used the same trick in the proof of Theorem 4.
Therefore, h(n) = f(n) − 4g(n) = −(−1)nf(n) = −(−1)nn and α 6= 1. We can now use the
translation operator.
We have S[h](n) = (−1)n(n− 1) for n ≥ 2 and therefore:

h(n) + S[h](n) =

{
1 n = 1

−(−1)n n ≥ 2
= −(−1)n.
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Using our previous examples, we quickly compute:

1/2 = 2Σ(h) = −6Σ(f) =⇒ Σ(f) = −1/12.

Once again we get the expected answer. However, further computations quickly get quite cumber-
some and we will need a different method to compute ζ(n) in general.

Let us also record the exponents of a (non trivial) Dirichlet character for future use.

Example 4. Let χ : Z/fZ −→ C× be a non trivial Dirichlet Character and let g(n) = χ(n) define
g ∈ X . The exponents of f are among the f -th roots of unity and distinct from 1.

This follows from the fact that n −→ ζmf (for ζf a primitive f root of unity) form a spanning
set for the set of functions (Z/fZ)× −→ C× by finite Fourier analysis. Furthermore, if 1
were an exponent, this would contradict the fact that the sum of χ(n) over a period is 0.

5. ANALYTIC CONTINUATION AS DIVERGENT SUMMATION

We can finally connect back to number theory in this section. I will show that the usual pro-
cess of analytic continuation and evaluation at an integer can be seen as a linear operator
that satisfies the criteria of Theorem 4 (that characterizes the Σ operator).

Thus, we can work with the abstract Σ operator instead of dealing with the intricacies of
complex analysis. Even more usefully, we can change our field from C to something more
arithmetically useful. We will make crucial use of this technique soon.

Let us now take the base field to be C. Let f ∈ X such that it’s exponents α all satisfy
|α| ≤ 1. Call the set of such f to be X≤1. Define the associated zeta function by:

ζf (s) =
∑
n≥1

f(n)

ns
.

Since |α| ≤ 1, f(n) is bounded by a polynomial in n and therefore ζf (s) converges for s
large enough. The first order of business will be to show that ζf (s) has a meromorphic
continuation to the plane.

Lemma 6. Let f and ζf (s) be as above. Then, ζf (s) has a meromorphic continuation to the plane.
Moreover, it does not have a pole at s = 0.

Proof. Any such f can be written as the sum of a polynomial (in n) and a f ′ ∈ X 6=1. Since
the case of f a polynomial reduces to the usual zeta function, we only need to deal with
f ′ ∈ X 6=1.

Since the eigenvalues of f ′ ∈ X/Xc under S are not equal to 1 and the span of f under S
is finite, S − 1 is invertible on X/Xc. That is, there exists f ′′ ∈ X such that:

f ′ = (S − 1)f ′′ + h for h ∈ Y c.

It is easy to see by computation that the exponents α of f ′′ are a subset of those of f . Since
for f , |α| ≤ 1, f ′ is bounded by a polynomial and moreover, f ′′ is bounded by the same
polynomial upto a constant factor that f ′ is bounded by. Converting the above equation
into Dirichlet series: ∑

n≥1

f ′(n)

ns
=
∑
n≥1

f ′′(n)

(
1

(n+ 1)s
− 1

(n)s

)
+ g(s)

where g is a finite sum of exponentials (and hence defined everywhere).
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Now, the point is that the series on the right converges faster than the one on the left. In
fact, we have the estimate: (

1

(n+ 1)s
− 1

(n)s

)
∼ 1

ns+1
.

Since both f ′ and f ′′ are bounded by the same polynomial, we have shifted the region
of convergence by at least 1 to the left. We can repeat this process to move the region of
convergence to include 0.

Finally, since f is bounded by a polynomial, we can bound ζf (s) by a finite sum of zeta
series of the form ζ(s − k) for varying k. Since all these series converge at s = 0, so does
ζf (s).

�

Remark 7. Note that the proof above also shows that ζf (s) has a pole if and only if some
exponent of f is equal to 1.

The lemma above gives us one way of making sense of ζf (0) for f ∈ X≤1. Our next goal
is to prove that the operator f −→ ζf (0) behaves as the operator Σ does. In particular, it
satisfies the hypothesis of Theorem 4 (that characterizes the Σ operator).

Theorem 8. The operator X≤1 −→ C : f −→ ζf (0) satisfies the following three properties:

(1) The restriction ζf (0) : Y c −→ C is the usual summation operator on finite sequences.
(2) For f ∈ Y 6=1 ∩X≤1, the operator is invariant under S.
(3) For all f ∈ X ≤ 1 and m ∈ N, the operator is invariant under Dm. That is, Σ(Dm[f ]) =

Σ(f).

Proof. One can check easily that X≤1 is invariant under both the operators S and Dm.

Property one is clear since for f compact, ζf (s) is a finite sum of exponentials. Property 3
is almost as easy. Let g = Dm[f ]. Then:

ζg(s) =
∑
n≥1

f(nm)

(nm)s
= m−sζf (s)

and at s = 0, we have ζg(0) = ζf (0).

Property two is a little harder to verify. For f ∈ Y 6=1 ∩ X≤1 f = S[f ] and now consider
ζg(s)− ζf (s). This has the series expansion:

ζg(s)− ζf (s) =
∑
n≥1

f(n)

ns

(
1

(1 + 1/n)s
− 1

)
.

We can expand the term in the brackets using it’s Taylor series as:(
1

(1 + 1/n)s
− 1

)
= − s

n
+
−s(−s− 1)

2!n2
+ · · ·+Rk(s, n).

The point is that each term is divisible by s and so vanishes at s = 0. To make it rigorous,
let k be such that |f(n)| ≤ Cnk−2 for some constant C. This implies that ζf (s) is abso-
lutely convergent for Re(s) ≥ k. This is what goes wrong for α = 1. Consider the Taylor
expansion:

1

s

(
1

(1 + 1/n)s
− 1

)
= − 1

n
+ · · ·+ Pk−1

nk−1
+Rk(s, n)

where Pk−1 is a polynomial of degree k−2 andRk(s, n) is the remainder term of the Taylor
series. We have a Taylor estimate Rk(s, n) ≤ Ck/nk for |s| ≤ k + 1 and therefore:
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ζg(s)− ζf (s) = s
∑
n≥1

f(n)

ns

(
− 1

n
+ · · ·+ Pk−1

nk−1
+Rk(s, n)− 1

n
+ · · ·+ Pk−1

nk−1
+Rk(s, n)

)
.

By our estimates, this series is absolutely convergent in a neighbourhood of s = k and
therefore s divides ζg(s)− ζf (s) as analytic functions. Therefore, ζg(0) = ζf (0) as required.

�

6. SOME APPLICATIONS TO DIRICHLET L-FUNCTIONS

Our work so far already gives us some interesting applications to Dirichlet L-functions.
The most basic one is to rationality of the values of L-functions.

6.1. Rationality of the values of L-functions. Let L(s, χ) be a Dirichlet L-function. Note
that χ(n) is periodic and hence satisfies a linear recurrence. Therefore, L(−k, χ) for integral
k ≥ 0 can be evaluated using our divergent summation techniques.

In particular, let Q(χ) be the field in which χ takes values. If f is a function taking values
in k, we know that Σ(f) is also in k. Therefore we immediately have:

Theorem 9. For integral k ≥ 0 and Dirichlet Character χ, we have L(−k, χ) ∈ Q(χ).

In particular, ζ(−k) ∈ Q.

6.2. Compatibility with Galois action. Since L(−k, χ) are algebraic integers, a natural
question is to study the action of the Galois group Gal(Q(χ)/Q) on these values. In fact,
this is particular easy. Define χσ(n) = σ(χ(n)). Then, we have the theorem:

Theorem 10. Let σ ∈ Gal(Q(χ)/Q) be a Galois automorphism. Then, for integral k ≥ 0:

L(−k, χσ) = L(−k, χ)σ.

Proof. Let us take our base field to be k = Q(χ). For f ∈ X , define Σσ(f) = σ−1(Σ(σ(f))).
Note that the theorem is equivalent to showing that Σσ = Σ. To do this, we only need to
show that it satisfies the properties characterizing Σ. But this is easy:

For compact sequences f , say bounded by N, we have:

Σσ(f) = σ−1
( ∑
n≤N

σ(f(n))

)
=
∑
n≤N

f(n) = Σ(f).

For invariance under translation and dilation, note that S[fσ] = S[f ]σ and similarly for
Dm. Also,X 6=1 is invariant under Σ after we extend it to an automorphism of Q. Therefore,
for f ∈ X 6=1, we have:

Σσ(S[f ]) = σ−1(Σ(S[fσ])) = σ−1(Σ(f)σ) = Σσ(f).

An exactly similar proof holds for Dm.

�
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7. SUMMATION IN NON-ARCHIMEDEAN FIELDS

Suppose now that k is a field equipped with a non archimedean valuation |·|. The examples
we will be interested in will be Zp and k((t)) with the usual valuations. Let R be the ring
of integers of k.

In this case, we can say quite a bit more about the Σ operator. A natural question to ask
in this case is whether Σ : X −→ k is a continuous operator where X is given the uniform
topology. Unfortunately, this is too much to ask for as the following example shows:

Example 5. Let fk(n) = αnk where αk 6= 1 for all k ∈ N but limαk = 1. Then, one can verify that
Σ[fk] = αk/(1− αk) while Σ[(1, 1, . . . )] = −1/2 and therefore lim Σ[fk] 6= Σ[lim(fk)].

Nevertheless, Σ is continuous for an important subspace of X as we now show:

Theorem 11. Let Λ ⊂ X be defined by:

Λ = {f : N −→ R ∈ Xα : |α− 1| = 1}.
That is, Λ consists of those sequences taking values in R for which the α are such that α − 1 is a
unit. Then, for f, g ∈ Λ, one has

|Σ[f ]− Σ[g]| ≤ Σ[f − g].

Proof. The proof is quite easy. Note that Λ ⊂ X 6=1. Recall from the remarks following
Theorem 4 that Σ[f ] = Σ[f c]/Pf (1). Here, Pf is the characteristic polynomial of S on
X/Y c. As such, it’s roots are the exponents α of f and by definition of Λ, |Pf (1)| = 1.

Moreover, fc = Pf (S)[f ] and since the roots of Pf are in R, we have Pf ∈ R[X] and so
fc(n) ∈ f(N) = R. Together, this implies that Σ[f ] ∈ R.

Let a uniformizer of R be denoted π. Now, suppose that f = g + πnh for h : N −→ R
and consequently in Λ. Then, Σ[f ] = Σ[g] + πnΣ[h] by linearity. However, by the previous
paragraph, we know that Σ[h] ∈ R and therefore πn|(Σ[f ]−Σ[g]) which proves our result.

�

This theorem will be at the root of most of what follows and it’s importance cannot be
understated!

8. GENERALIZED KUMMER CONGRUENCES

We have finally set up enough general theory to quickly prove the Kummer congruences
using the method outlined in the introduction. Let us first assume that the L-functions
under consideration have non trivial Dirichlet characters.

Let us first prove a preliminary version of the Kummer congruences for Dirichlet L-functions
with non trivial characters that exposes most of the ideas in the proof.

Theorem 12. Let χ1, χ2 : Z −→ K be two non trivial Dirichlet characters (with possibly distinct
conductors N1, N2). Also, let p be a prime of K lying over a rational prime p not dividing the
conductors of χ1, χ2 such that for all n coprime to p and two non negative integers k, l, we have:

χ1(n)nk ≡ χ2(n)nl (mod pr).

Then, the corresponding L-functions have integral values:

L(−k, χ1), L(−l, χ2) ∈ OKp

and satisfy the congruence:

L(−k, χ1) ≡ L(−l, χ2) (mod pr).
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Proof. Define f1(n) = χ1n
k, f2(n) = χ2(n). The strategy of the proof is simple. We would

like to modify f1, f2 simultaneously so that we can apply Theorem 11 from the previous
section.

A problem with applying the theorem is the following: While f1(n) ≡ f2(n) (mod pr) for
n coprime to p, this might not be true for n divisible by p.

To fix this, define

θp(n) =

{
1 p - n
0 p|n

and:
g1(n) = θp(n)f1(n), g2(n) = θp(n)f2(n).

It is now clear that g1(n) ≡ g2(n) (mod pr) for all n.

To apply Theorem 11, we also need to check that the exponents α of g1 − g2 are such that
α − 1 is a unit in Kp. The exponents of θp(n) are p-roots of unity while the exponents of
f1, f2 are non trivial N1, N2- roots of unity (see example 4, section 4).

Since N1, N2 are coprime to p and the exponents of f(n)g(n) are the products of exponents
of f and g, it is now clear that the exponents of g1 − g2 satisfy the required property.

Applying Theorem 11 to g1 − g2, we have:

Σ(g1) ≡ Σ(g2) (mod pr).

To calculate Σ(gi), note that:

θp(n)χ(n)nk = χ(n)nk − χ(p)pkDp[χ(n)nk].

Applying Σ to both sides and using invariance under Dp, we have:

Σ(g1) = (1− χ1(p)p
k)Σ(χ(n)nk)

and similarly for g2. Therefore, we have:

(1− χ1(p)p
k)L(−k, χ1) ≡ (1− χ2(p)p

l)L(−l, χ2) (mod pr).

Finally, since χ1(p)p
k ≡ χ2(p)p

l (mod pr), we can cancel these factors to obtain:

L(−k, χ1) ≡ L(−l, χ2) (mod pr).

Also, applying Theorem 11 to g1, g2 individually gives us the integrality condition:

L(−k, χ1), L(−l, χ2) ∈ OKp .

�

A small modification of the above proof will also prove a similar theorem for the Riemann
zeta function. We will use the same notation as in the proof of the previous theorem.

Theorem 13. Let χ1, χ2 : Z −→ K be two Dirichlet characters (possibly both trivial) of conductor
N1, N2. As before, let p be a prime ofK lying over the rational prime p (but now with no restrictions
on p). Let k, l be non negative integers such that for all n coprime to p, we have:

χ1(n)nk ≡ χ2(n)nl (mod pr).

Then, for any q coprime to pN1N2, the L-functions satisfy the integrality condition:

(1− χ1(q)q
k+1)(1− χ1(p)p

k)L(−k, χ1), (1− χ2(q)q
l+1)(1− χ2(p)p

l)L(−l, χ2) ∈ OKp

and the congruence:

(1− χ1(q)q
k+1)(1− χ1(p)p

k)L(−k, χ1) ≡ (1− χ2(q)q
l+1)(1− χ2(p)p

l)L(−l, χ2) (mod pr).

11



This theorem will specialize to both the usual Kummer congruences as well the Von Staudt-
Clausen theorem as we will show later.

Proof. As before, let f1(n) = χ1(n)nk and f2(n) = χ2(n)nl. The strategy of the proof is the
same as before. The additional wrinkle in this case is that if χ(n) = 1 or the conductor is
divisible by p, then the exponents α of θp(n)χ(n)nk will not be such that α − 1 is a unit in
Kp.

To fix this, for q coprime to p, define:

h1 = f1 − χ1(q)q
k+1Dq[f1] = χ1(n)nk − (1 + ζnq + ζ2nq + · · ·+ ζ(q−1)nq )χ1(n)nk

= −(ζnq + ζ2nq + · · ·+ ζ(q−1)nq )χ1(n)nk

and similarly for h2.The above expression also shows that the exponents of hi are non
trivial qNi- roots of unity. Note also that under our hypothesis:

h1(n) ≡ h2(n) (mod pr).

Note also that:
Σ(h1) = (1− χ1(q)q

k+1)Σ(f1)

and similarly for h2. This done, the rest of the proof proceeds much the same as before.

Therefore, define:
gi(n) = θp(n)fi(n)

and once again, we have:
g1(n) ≡ g2(n) (mod pr)

and the exponents α of g1(n) − g2(n) are such that α − 1 is a unit. We can also calculate
Σ(gi) as before:

θph1 = h1 − χ1(p)p
kDp[h1]

since ζrnq −→ ζ
rn/p
q simply permutes the non trivial q-roots of unity. Applying Σ:

Σ(g1) = (1− χ1(p)p
k)Σ(h1) = (1− χ1(p)p

k)(1− χ1(q)q
k+1)Σ(f1).

Applying Theorem 11 to g1, g2 individually gives us the integrality condition:

(1− χ1(q)q
k+1)(1− χ1(p)p

k)L(−k, χ1), (1− χ2(q)q
l+1)(1− χ2(p)p

l)L(−l, χ2) ∈ OKp

and applying it to g1 − g2 gives us:

(1− χ1(q)q
k+1)(1− χ1(p)p

k)L(−k, χ1) ≡ (1− χ2(q)q
l+1)(1− χ2(p)p

l)L(−l, χ2) (mod pr).

�

We can specialize to get useful theorems:

Corollary 14 (Generalized Kummer Congruences). Suppose χ1(q)q
k+1 and χ2(q)q

l are co-
prime to p. Then:

(1− χ1(p)p
k)L(−k, χ1) ≡ (1− χ2(p)p

l)L(−l, χ2) (mod pr).

In particular, if χ1 = χ2 ≡ 1 and (p− 1) - (k + 1)(l + 1) and k ≡ l (mod (p− 1)pr−1), then:

(1− pk)ζ(−k) ≡ (1− pl)ζ(−l) (mod pr).

This final expression is the standard form for the Kummer congruences.
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Corollary 15 (Kummer Congruences with Teichmuller characters). Let ω : (Z/pZ) −→
Z(µp−1) be the Teichmuller character. That is, ω(n) is the unique p-th root of unity such that
ω(n) ≡ n (mod p). Let p be a prime of Q(µp−1) lying over p. Then for non negative integers k, l
such that k + 1 is not divisble by p− 1, we have:

ζ(−k − l) ≡ L(−k, ωl) (mod p).

Specializing even more:
ζ(1− k) ≡ L(−1, ωk−2) (mod p).

Remark 16. This final form is used in Ribet’s paper on the converse to Herbrand-Ribet
to prove congruences between modular forms of different level (and weight) and plays a
cruical role in the proof. Ribet proves the congruence using an explicit representation of
L(−1, ε) in terms of Bernoulli numbers.

Suppose again that χ1 = χ2 ≡ 1. We will show in the next section that ζ(−k) = Bk+1/(k+1)

where Bk is the k-th Bernoulli number. We can therefore use the above results to gain
p-adic information about the Bernouli numbers.

Corollary 17 (p-adic Valuation of the Bernoulli numbers). The denominator of Bk can only be
divisible by a prime p to the first power. Further, this can only happen if (p− 1)|n.

Proof. Let pr−1 be the highest power of p that divides k + 1. That is, vp(k + 1) = r − 1. By
the above, we know that for any q coprime to p:

(qk+1 − 1)ζ(−k) = (qk+1 − 1)
Bk+1

k + 1
∈ Zp.

First suppose that (p− 1) - (k + 1). Choose q so that qk+1 6≡ 1 (mod p). Taking valuations,
this shows:

vp(Bk+1) ≥ vp(k + 1) = r ≥ 0.

Next, suppose that (p − 1)|(k + 1). In this case, choose q so that vp(qk+1 − 1) = r. This
can be done by taking q to be a cyclic generator of the cyclic group (Z/pr+1Z)×. Taking
valuations:

vp(q
k+1 − 1) + vp(Bk+1)− vp(k + 1) ≥ 0

=⇒ r + vp(Bk+1)− (r − 1) ≥ 0

=⇒ vp(Bk+1) ≥ −1

�

Remark 18. In fact, in the case that p − 1|(k + 1), the denominator is actually divisible by
p and moreover, the numerator is coprime to p. In other words, vp(ζ(−k)) = 1 + vp(k + 1)
in this case. It might be interesting to prove this using the techniques here.

9. EXPLICIT COMPUTATION OF SPECIAL VALUES OF DIRICHLET L-FUNCTIONS

This is the only entirely original section of this note. I will compute the explicit values of
Dirichlet L-functions in terms of the Bernoulli numbers. Let us first begin with Dirichlet
L-functions with non trivial character.

13



Theorem 19. For χ : Z/fZ −→ C× a non trivial Dirichlet character and k a non negative integer,
we have:

L(−k, χ) = −
Bk+1,χ

k + 1

where the Bk,χ are defined by the exponential generating function:

f∑
a=1

χ(a)
teat

eft − 1
=
∞∑
k=0

Bk,χ
tk

k!
.

Proof. The idea is simple, as outlined in the introduction. Let us take our base field k =
Q(χ)((t)). This is a non archimedean complete field in a natural way with ring of integers
R = Q(χ)[[t]] and the results of section 7 are applicable.

In particular, recall that Λ is the set of sequences taking values in R and for which the
exponents α are such that α−1 is a unit. Then, we showed that Σ : Λ −→ R is a continuous
functional.

In particular, for a sequence gk ∈ Λ such that limk gk = g ∈ Λ, we have limk Σ(gk) = Σ(g).
Let us take

gk(n) =
k∑
i=0

niχ(n)
ti

i!
.

It is easy to see that g = limk gk = χ(n)ent ∈ Λ. This is because the exponents associated to
χ(n) are all roots of unity and not equal to 1 (see example 4, section 4) and the exponents of
g are therefore of the form etζf for ζf a non trivial f -th root of unity of 1. Certainly, etζf −1
is a unit in R.

However, it is also easy to compute the action of Σ on gk and g. By definition, we have:

Σ(gk) =
k∑
i=0

L(−i, χ)
ti

i!

and therefore:

lim
k

Σ(gk) =
∞∑
i=0

L(−i, χ)
ti

i!
.

On the other hand:

Σ(g) =

f∑
a=1

χ(a)
eat

1− eft
=

1

t

∞∑
k=0

−Bk,χ
tk

k!
.

Since Σ(g) = lim Σ(gk), on equation the coefficients of their respective power series expan-
sions, we have:

L(1− k, χ) = −
Bk,χ
k

.

�

If we try to adapt the above proof to the case of the Riemann zeta function by letting χ be
the trivial function, we come across the problem that g(n) = limk gk(n) = ent is not in Λ.
The corresponding α is just et and certainly, et − 1 is not a unit in R.

We came across a similar problem while proving the Kummer congruences and we will
solve this in a similar way.
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Instead of calculating ζ(−k), let us instead calculate (1 − 2k+1)ζ(−k). The corresponding
series for this is:

fi(n) = ni − 2i+1D2[n
i] = −(−1)nni.

Clearly, fk(n) has exponent −1 and −1− 1 = 2 is a unit in R.

As before, let us define:

gk(n) =
k∑
i=0

−(−1)ini
ti

i!
.

Now, g = limk gk = −(−1)nent. This is in Λ since the exponent is −et. Repeating the
calculations as before will show:∑

k≥0
(1− 2k+1)ζ(−k)

tk

k!
=

et

1 + et
.

It is now a simple verification that ζ(−k) = −Bk+1

k+1 satisfies the above equation. Indeed,
substituting the above value for ζ(−k) and using the exponential generating function for
Bk, we have:∑

k≥0
(1− 2k+1)ζ(−k)

tk

k!
=
∑
k≥0
−(1− 2k+1)Bk+1

tk

(k + 1)!

= −1

t

(
t

1− e−t
− 1

)
+

1

t

(
2t

1− e−2t
− 1

)
=

1

1 + e−t

and we have therefore proven:

Theorem 20. For k a non negative integer and Bk the Bernoulli Number, we have:

ζ(−k) = −Bk+1

k + 1
.
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