DIVERGENT SERIES AND L-FUNCTIONS

ASVIN GOTHANDARAMAN

ABSTRACT. The goal of this note is to develop a theory of summing divergent series that is
applicable to the Riemann zeta function and Dirichlet L-functions. In particular, I will prove
the rationality of the values of Dirichlet L-functions at negative integers, their compatibility
with the Galois action, generalized Kummer congruences for Dirichlet L-functions and other
p-adic information on these values and finally compute the values explicitly in terms of
generalized Bernoulli numbers.
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The results in this paper are mostly based off of lectures notes of Prof. Akshay Venkatesh'".

The only completely original section is the one on the computation of special values in
terms of generalized Bernoulli numbers. Parts of the section on Kummer congruences are
also original as well as the subsection on compatibility with Galois action.

1. INTRODUCTION

Recall the standard definitions:

()=

n>1

[NSection 3, The Analytic Class Number Formula and L-functions
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and for a Dirichlet character x of conductor f:

L(s,x) = Z x(n)

ns
n>1

both of which are defined for Re(s) > 1 and can be meromorphically continued to the
entire real plane (except possible a pole at s = 1.

In particular, the value of the series at negative integers is computed by the often opaque
process of analytic continuation and results at these points are established by analytic con-
tinuation.

However, it turns out that L-function have striking arithmetic properties at negative inte-
gers compared to the positive integers. For instance, ((—k) € Q for all £ > 0 while the
values at positive integers have a transcendental factor.

We would like to develop tools to work with the negative integers directly. For instance,
we would like to justify the following “proof” of the Kummer congruences rigorously.

Theorem 1 (Kummer Congruence:). Suppose that k, are two positive integers such that k = [
(mod p — 1) and neither one is congruent to 1. Then, ((—k), ((—1) are in Z, and {(—k) = ((—)
(mod p).

Proof. Let us suppose that we can treat ((—k) = 1¥ + 2% ... as an actual convergent series.
Then we might attempt the following proof:

Under the conditions on k,l, n* = n! (mod p) for all p and so their summations are also
congruent! O

Clearly this proof is completely bogus in the standard theory of series for many reasons.
Nevertheless, the theory we develop will allow us to make this argument rigorous with
very little modifications! Even more, it will generalize naturally to all the Dirichlet L-series.

Similarly, consider the following evaluation of {(—k):

Write out each “series expansion” as

to ” » Oto Oto Ot

t! (o tt

Yo | v v
C(l)ll =71 1!.+2 1!+3 u—i—...

t2 ) 9 2t2 2t2 2t2
((2)5 = 15—1—2 5—1—3 5—1—

5kt okttt

and instead of summing horizontally, let us sum vertically first. The left hand side is the
exponential generating series for ((k), let us call it f(¢). The right hand side sums to ¢™ for
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n=1,2.... Thatis, we get:

et

tk ” » t 2t 3t ) ”

k>0

The right hand side is the exponential generating series for the Bernoulli numbers (with
some minor changes) and on equating the coefficients of t*, one obtains ((—k) = —Bj11/(k+
1) which is the right answer! Once again, our theory will make this rigorous and even ex-
tend the method to all Dirichlet L-functions.

Let me now describe a brief, imprecise outline of the note:

First, we will define an ”abstract sequence space” over a field K which is simply the set of
sequences that eventually satisfy a linear recurrence. In particular, this contains all finite
sequences.

We would like to define a linear functional on this space that extends the usual summa-
tion on finite sequences while maintaining some properties of the usual summations. In
particular, we will want our summation to be invariant under shifting all the terms to the
right and a ”dilation” operator, to be defined later. In fact, we will show that under mild
conditions, there is exactly one such functional.

Now, suppose that our ground field is C. For a sequence n — f(n) in our abstract se-
quence space, the zeta function is defined by:

(rn) = f(z)

n
n>1

for Re(s) > 0. I will show that there is a meromorphic continuation to the entire plane and
that s = 0 is not a pole. Thus, we can define an operator by f — (¢(0).

We will show that this operator satisfies the invariance properties we required of our ab-
stract summation operator. Therefore, it has to match our previously defined operator.
This done, we will forget entirely about analytic continuation and deal purely with our
abstractly defined operator and make the above arguments rigorous rather easily.

2. ABSTRACT SEQUENCE SPACES

We will define a vector space of sequences over which it will be possible to define a unique
summation operator that extends the usual summation for finite sequences. The definition
is as follows:

Fix a field k£ throughout unless otherwise specified. In this article, N will always refer to
the set {1,2,3...}.

Definition 1. Let Y be the set of sequences with compact support. That is, all but finitely many
terms are zero.

Then, define X to be the set of sequences that satisfy a linear recurrence eventually with a finite
number of initial values. That is, f € X if and only if there exist ag, a1, . .., a, € k such that

apf(n)+arf(n—1)+---+a,f(n—r)=0foralln>> 0.
All the sequences we are interested in will be of this form.
We will eventually define an extension of ¥ to all of X. However, first let us provide an

alternate characterization for sequences that satisfy a linear recurrence. The following is
well known:



Theorem 2. A sequence f : N — k satisfies a linear recurrence precisely when it is a linear
combination of sequences of the form o™p(n) for a € k and p(n) € klx] with the first r values
being arbitrary. Furthermore, if f satisfies the linear recurrence:

aof(n) +arf(n—1) +---+arf(n—r),
then the o that appear in the linear combination are all exactly the roots of

a(t)=apt" +ait" '+ 4a,=0

and the degree of the polynomial p(n) associated to such an « is equal to the multiplicity of o in
a(t) minus 1.
Definition 2. Let us then define Y to be the space of sequence of the above form taking values in k.

That is. Y consists of sequences of the form:

f(n) Zcha”nk ck foraeEX,ck € k™ and k € N.
o,k

For f € X, we will have such a decomposition (in a unique way) for large n. The «
that appear will be called the exponents of f and the variable o will be reserved for this
purpose.

An important consequence of the theorem is:

Lemma 3. The sum and product of sequences in X is again part of X. That is, for f,g € X the
sequences n — f(n) + g(n) and n — f(n)g(n) are both again in X.

It will be convenient to break X up into into the following subspaces.

Definition 3. Let us define Y'* to be the vector space of sequences of the form op(n) for p(n) €
k[x] and Y7 to be the complement of Y''. Similarly, we can define X® = Y + Y°.

2.1. Operators on Sequences. We will also make heavy use of the following two endo-
morphisms of X:

Define S : X — X by S[f](n) = f(n — 1) for n > 2 and S[f](1) = 0. This is the ”shift by
one to the right” operator. S|[f] is in X since it satisfies the same eventual recurrence as f.

Next, for m € N, define D, : X — X by D,,[f](n) = f(n/m) if m|n and 0 otherwise.
This is the dilation operator and it simply stretches our sequence out. It is not hard to see
that D,,[f] also eventually satisfies a linear recurrence.

What will be crucially important for us is that for any f € Y, the span of f under S is finite
dimensional. This is in fact equivalent to saying that f satisfies a linear recurrence.

Equivalently, for any f € X, we can find a polynomial Py € k[z] such that P;(S)[f] € Y°.

3. EXTENDING THE SUMMATION OPERATOR

Finally, we are in a position to realize our goal of defining a summation for all sequences
in X. The main theorem of this section is the following:

Theorem 4. There is a unique linear functional ¥ : X — k such that:

(1) The restriction ¥ : Y¢ — k is the usual summation operator on finite sequences.
(2) For f € Y71, the operator is invariant under S. That is, ©(S[f]) = 2(f).
(3) Forall f € X and m € N, the operator is invariant under D,,. That is, ¥(Dy,[f]) = 2(f).
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In fact, as we will see the proof of this theorem will be readily adapted to prove stronger
versions of this theorem as we need. See the remark following the proof for stronger ver-
sions of this theorem.

The idea of the proof is simple. The invariance under the various operators will force
uniqueness. For instance, suppose f € Y* and a # 1. Recall that the orbit of f under S'is
finite modulo Y. In other words, for the characteristic polynomial P¢(X) € k[X] of f, we
have:

Pi(S)[f] = f¢  forsome f¢ e Y.
Applying ¥ to both sides and using the invariance under ¥, we are forced into:

Pr()(X(f)) = E(f°)

and since the eigenvalues « of f arenot 1, P¢(1) # 0 and this determines the value of X( f).
A similar argument holds for f € Y! using D,, instead.

Of course, we still have to establish that this defines a linear functional. Instead, we will
take a different approach that proves uniqueness and existence simultaneously. We will
first extend the operator to X7 from Y and then use this to further extend to all of X.

Proof. (2) Note that an S-invariant functional on a vector space W is the same as a func-
tional on W/(S — 1)W. However, I claim that the inclusion Y¢ — X for o # 1 induces
an isomorphism Y¢/(S — 1)Y= X®/(S — 1) X“. This is clearly sufficient to prove (2).

Consider the following diagram:

0 ye G Xe/ye — 0
fs—n l(s—n F
0 ye Xo XY — 0
Ye/(S —1)Y° X/(8 —1)X®

The final vertical arrow is an isomorphism because the eigenvalues of (S — 1) are all non
zero. Applying the snake lemma induces the required isomorphism Y¢/(S — 1)Y*¢ =
X/(S—-1)X“.
(3) We will follow the same strategy, only making the replacements (Y¢, X%, S — 1) —
(X7, X, D; — 1) for some prime [ # 0 € k.
First, let us prove that ¥(D,,[f]) = X(f) for f € X%, «a # 1. This follows because S™D,,, =
D,,S. We know that there exists f¢ € Y such that (S — a)"[f] = f¢ and therefore X(f) =
(/A =a)™.
On the other hand:

Din[f] = Dn(S = 1)"[f] = (5™ = 1)"[ D[]
and since ¥ is D,, invariant on Y¢, ¥(Dy,[f]) = £(f¢)/(1 — a)™ and ¥ is therefore D,,

invariant on X7!.

Note that X/X7! can be identified with the space of all polynomials. This vector space
clearly has the basis 1,12, ... where n* stands for the sequence f(n) = n*. To mimic the

previous proof, we need to prove that D,,, does not have eigenvalue 1 on this vector space.
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However, this follows from the following observation:

G e A e A S A
D[] = Lol z L 0 s (mod X7,

Therefore, the n* form a basis of eigenvectors with eigenvalues [=(k+1) £ 1. After this step,
the rest of the proof proceeds exactly as before after making the replacements.

O
Remark 5. A couple of remarks about strengthening the previous theorem:

(1) Note that, even if we only insist on S-invariance, there is only a unique extension of ¥ :
X — k for each o # 1.

(2) Second, to extend the operator to X", we only need to first extend X to YI*I=" as can be
seen by examining the proof.

(3) As noted before the proof, for f € X7*, the value of X[f] is X(f¢)/Ps(1) where f¢ € Y
and Py is the characteristic polynomial of S on the span of f in X/Y .

All three of these remarks will be used in what follows.

4. SOME EXAMPLES

Let us see how we can use these ideas to compute X( f) for a few sequences.
Example 1. Let f(n) = o™ for a # 1. This is the analogue of the usual geometric series a-+a’+. . .
and we should expect the same answer. Indeed:
Note that S[f](n) = o™ for n > 2. Therefore, S[f](n) = a~1f(n) forn > 2. Let g =
(,0,0,...) = f — aS[f] Since ¥ is invariant under S in this case, we have:
a=3%(g) = (1-a)i(f)
and so X(f) = a/(1 — )
Example 2. Now let f(n) = 1 be constant. In this case, we should expect the value to be equal to

¢(0). However, in this case, we cannot use the translation operator since oo = 1. Instead, let us use
Ds.

Let g = 2D5[f]. This sequence goes as 0,2,0,2,0,2.... Therefore, f(n) — g(n) = —(—1)" and
we are in the case of our previous example. Applying ¥ and using invariance, we have:

() =22(f) =1/2 = 5(f) = -1/2
and we see that ¥( f) is indeed equal to ((0).

Example 3. Now let f(n) = n. In this case, we should expect the value to be equal to ((1). We
will need to use Dy once again.

Let g = Ds[f] = W% This is because H(%)" is 0 when n is odd and 1 when n is even. We
used the same trick in the proof of Theorem 4.

Therefore, h(n) = f(n) —4g(n) = —(—1)"f(n) = —(—1)"n and o # 1. We can now use the
translation operator.

We have S[h](n) = (—=1)"(n — 1) for n > 2 and therefore:

h(n) + S[h](n) = {1_(_1)” Zi ; —(—1)m
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Using our previous examples, we quickly compute:
1/2 = 25(h) = —6%(f) = X(f) = —1/12.

Once again we get the expected answer. However, further computations quickly get quite cumber-
some and we will need a different method to compute ((n) in general.

Let us also record the exponents of a (non trivial) Dirichlet character for future use.

Example 4. Let x : Z/ fZ — C* be a non trivial Dirichlet Character and let g(n) = x(n) define
g € X. The exponents of f are among the f-th roots of unity and distinct from 1.

This follows from the fact thatn — ¢t (for ( a primitive f root of unity) form a spanning

set for the set of functions (Z/fZ)* — C* by finite Fourier analysis. Furthermore, if 1
were an exponent, this would contradict the fact that the sum of x(n) over a period is 0.

5. ANALYTIC CONTINUATION AS DIVERGENT SUMMATION

We can finally connect back to number theory in this section. I will show that the usual pro-
cess of analytic continuation and evaluation at an integer can be seen as a linear operator
that satisfies the criteria of Theorem 4 (that characterizes the ¥ operator).

Thus, we can work with the abstract ¥ operator instead of dealing with the intricacies of
complex analysis. Even more usefully, we can change our field from C to something more
arithmetically useful. We will make crucial use of this technique soon.

Let us now take the base field to be C. Let f € X such that it's exponents « all satisfy
|| < 1. Call the set of such f to be X<!. Define the associated zeta function by:

()= f(f)-

n
n>1

Since |a| < 1, f(n) is bounded by a polynomial in n» and therefore (¢(s) converges for s
large enough. The first order of business will be to show that (;(s) has a meromorphic
continuation to the plane.

Lemma 6. Let f and (;(s) be as above. Then, (¢(s) has a meromorphic continuation to the plane.
Moreover, it does not have a pole at s = 0.

Proof. Any such f can be written as the sum of a polynomial (in n) and a f/ € X7!. Since
the case of f a polynomial reduces to the usual zeta function, we only need to deal with
fle X7

Since the eigenvalues of f’ € X/X° under S are not equal to 1 and the span of f under S
is finite, S — 1 is invertible on X/X¢. That is, there exists f” € X such that:

ff=(S—-1)f"+hforheYe".

It is easy to see by computation that the exponents « of f” are a subset of those of f. Since
for f, |a| < 1, f" is bounded by a polynomial and moreover, f” is bounded by the same
polynomial upto a constant factor that f’ is bounded by. Converting the above equation

into Dirichlet series:
f'(n) _ "in < 1 o 1 ) s
> 5 = 2O\ G~ ) T

n>1

where g is a finite sum of exponentials (and hence defined everywhere).
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Now, the point is that the series on the right converges faster than the one on the left. In
fact, we have the estimate:

1 1 1
<<n 17 <n>s> st
Since both f" and f” are bounded by the same polynomial, we have shifted the region
of convergence by at least 1 to the left. We can repeat this process to move the region of

convergence to include 0.

Finally, since f is bounded by a polynomial, we can bound (;(s) by a finite sum of zeta
series of the form ((s — k) for varying k. Since all these series converge at s = 0, so does

Cr(s).
O

Remark 7. Note that the proof above also shows that (¢(s) has a pole if and only if some
exponent of f is equal to 1.

The lemma above gives us one way of making sense of (¢(0) for f € X=!. Our next goal
is to prove that the operator f — (;(0) behaves as the operator ¥ does. In particular, it
satisfies the hypothesis of Theorem 4 (that characterizes the ¥ operator).

Theorem 8. The operator X=' — C : f — (4(0) satisfies the following three properties:

(1) The restriction (¢(0) : Y¢ — C is the usual summation operator on finite sequences.
(2) For f € Y711 X<, the operator is invariant under S.
(3) Forall f € X < 1and m € N, the operator is invariant under D,,. That is, ¥(D,,[f]) =

2(f)-
Proof. One can check easily that X <! is invariant under both the operators S and D,y,.

Property one is clear since for f compact, (¢(s) is a finite sum of exponentials. Property 3
is almost as easy. Let g = D,,,[f]. Then:

Go(s) = 4] — (o)

n>1

and at s = 0, we have (;(0) = (f(0).

Property two is a little harder to verify. For f € Y71 N X<! f = S[f] and now consider
(g(s) — C¢(s). This has the series expansion:

n 1
)= 6 = I (1),

n>1

We can expand the term in the brackets using it’s Taylor series as:

1 s  —s(—s—1)
- )=y 2 T . .
((1+1/n)s > nt oz Tt R
The point is that each term is divisible by s and so vanishes at s = 0. To make it rigorous,
let k be such that |f(n)] < Cn*~2 for some constant C. This implies that (;(s) is abso-
lutely convergent for Re(s) > k. This is what goes wrong for a = 1. Consider the Taylor

expansion:

1 1 1 Py
el [ S T R R
s <(1 +1/n)* ) n k(s:m)

where P;,_; is a polynomial of degree k —2 and Rj(s, n) is the remainder term of the Taylor
series. We have a Taylor estimate Rj(s,n) < Cy/n for |s| < k + 1 and therefore:
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Co(s) = Cp(s) =s Z

n>1

f(n) 1 Pk,1 1 Pkfl
> _E—i—“.—i_nk—l+Rk(s’n)_ﬁ+“.+nk_1+Rk(37n) .

By our estimates, this series is absolutely convergent in a neighbourhood of s = k and
therefore s divides (4(s) — (f(s) as analytic functions. Therefore, (,(0) = (7(0) as required.

0

6. SOME APPLICATIONS TO DIRICHLET L-FUNCTIONS

Our work so far already gives us some interesting applications to Dirichlet L-functions.
The most basic one is to rationality of the values of L-functions.

6.1. Rationality of the values of L-functions. Let L(s, x) be a Dirichlet L-function. Note
that x(n) is periodic and hence satisfies a linear recurrence. Therefore, L(—k, x) for integral
k > 0 can be evaluated using our divergent summation techniques.

In particular, let Q(x) be the field in which x takes values. If f is a function taking values
in k, we know that 3(f) is also in k. Therefore we immediately have:

Theorem 9. For integral k > 0 and Dirichlet Character , we have L(—k, x) € Q(x)-

In particular, {(—k) € Q.

6.2. Compatibility with Galois action. Since L(—k, x) are algebraic integers, a natural
question is to study the action of the Galois group Gal(Q(x)/Q) on these values. In fact,
this is particular easy. Define x?(n) = o(x(n)). Then, we have the theorem:

Theorem 10. Let o € Gal(Q(x)/Q) be a Galois automorphism. Then, for integral k > 0:
L(—k,x°) = L(—k,x)°.
Proof. Let us take our base field to be k = Q(x). For f € X, define X7(f) = o1 (Z(o(f)))-

Note that the theorem is equivalent to showing that ¥ = . To do this, we only need to
show that it satisfies the properties characterizing ¥. But this is easy:

For compact sequences f, say bounded by N, we have:

57 (f) = a—l( 3 a(f(n))> = f(n) = 20,

n<N n<N

For invariance under translation and dilation, note that S[f?] = S[f]° and similarly for
D,,. Also, X#! is invariant under ¥ after we extend it to an automorphism of Q. Therefore,
for f € X#!, we have:

B7(S[f]) = o H(B(S1F7]) = o7 H(E(f)7) = Z7(f).

An exactly similar proof holds for D,,.



7. SUMMATION IN NON-ARCHIMEDEAN FIELDS

Suppose now that k is a field equipped with a non archimedean valuation |-|. The examples
we will be interested in will be Z,, and k((t)) with the usual valuations. Let R be the ring
of integers of k.

In this case, we can say quite a bit more about the 3 operator. A natural question to ask
in this case is whether ¥ : X — £ is a continuous operator where X is given the uniform
topology. Unfortunately, this is too much to ask for as the following example shows:

Example 5. Let fi.(n) = o) where oy, # 1 for all k € N but lim oy, = 1. Then, one can verify that
Y[fx] = ar/(1 — ag) while 3[(1,1,...)] = —1/2 and therefore lim X[ fi] # X[lim(fx)].
Nevertheless, X is continuous for an important subspace of X as we now show:
Theorem 11. Let A C X be defined by:

A={f:N—Re X% |la—1| =1}

That is, A consists of those sequences taking values in R for which the « are such that o — 1 is a
unit. Then, for f,g € A, one has

1X[f] = Z[gll < Z[f - g].

Proof. The proof is quite easy. Note that A C X7!. Recall from the remarks following
Theorem 4 that X[f] = X[f¢|/P¢(1). Here, Py is the characteristic polynomial of S on
X/Y*¢. As such, it’s roots are the exponents « of f and by definition of A, |P¢(1)| = 1.

Moreover, f. = P;(S)[f] and since the roots of Py are in R, we have Py € R[X] and so
fe(n) € f(N) = R. Together, this implies that X[f] € R.

Let a uniformizer of R be denoted 7. Now, suppose that f = g + 7"hforh : N — R
and consequently in A. Then, X[f] = X[g] + 7" X[h] by linearity. However, by the previous
paragraph, we know that X[h] € R and therefore 7"|(X[f] — X[g]) which proves our result.

0

This theorem will be at the root of most of what follows and it’s importance cannot be
understated!

8. GENERALIZED KUMMER CONGRUENCES

We have finally set up enough general theory to quickly prove the Kummer congruences
using the method outlined in the introduction. Let us first assume that the L-functions
under consideration have non trivial Dirichlet characters.

Let us first prove a preliminary version of the Kummer congruences for Dirichlet L-functions
with non trivial characters that exposes most of the ideas in the proof.

Theorem 12. Let x1, x2 : Z — K be two non trivial Dirichlet characters (with possibly distinct
conductors Ny, Na). Also, let p be a prime of K lying over a rational prime p not dividing the
conductors of x1, x2 such that for all n coprime to p and two non negative integers k, [, we have:

x1(n)n"® = xa(n)n'  (mod p").
Then, the corresponding L-functions have integral values:
L(—k,x1), L(—1, x2) € Ok,
and satisfy the congruence:
L(—k,x1) = L(—1,x2) (mod p").
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Proof. Define f1(n) = x1n*, fa(n) = x2(n). The strategy of the proof is simple. We would
like to modify fi, fo simultaneously so that we can apply Theorem 11 from the previous
section.

A problem with applying the theorem is the following: While fi(n) = f2(n) (mod p”) for
n coprime to p, this might not be true for n divisible by p.

To fix this, define
1 ptn
0 =
p(n) {0 pln

and:
91(n) = Op(n) f1(n), g2(n) = Oy(n) fo(n).
It is now clear that g;(n) = g2(n) (mod p") for all n.

To apply Theorem 11, we also need to check that the exponents o of g; — g2 are such that
a — 1is a unit in K. The exponents of #,(n) are p-roots of unity while the exponents of
f1, f2 are non trivial Ny, N- roots of unity (see example 4, section 4).

Since N1, N; are coprime to p and the exponents of f(n)g(n) are the products of exponents
of f and g, it is now clear that the exponents of g; — g2 satisfy the required property.

Applying Theorem 11 to g; — g2, we have:
%(g1) = X(g2)  (mod p).

To calculate (g;), note that:

Op(n)x(n)n" = x(n)n* — x(p)p* Dylx(n)n"].
Applying ¥ to both sides and using invariance under D,, we have:

2(g1) = (1 = xa(@)p")E(x(n)n”)
and similarly for go. Therefore, we have:
(1= x1(P)p")L(—k,x1) = (1 = x2(p)p)L(~1,x2)  (mod p").
Finally, since x1(p)p* = x2(p)p' (mod p"), we can cancel these factors to obtain:
L(_kaXI) = L(_Z7X2) (mOd pr)
Also, applying Theorem 11 to g1, g2 individually gives us the integrality condition:
L(_kv X1)7 L(_la XQ) € ﬁKp'
U

A small modification of the above proof will also prove a similar theorem for the Riemann
zeta function. We will use the same notation as in the proof of the previous theorem.

Theorem 13. Let x1, x2 : Z — K be two Dirichlet characters (possibly both trivial) of conductor
N1, Na. As before, let p be a prime of K lying over the rational prime p (but now with no restrictions
on p). Let k,l be non negative integers such that for all n coprime to p, we have:

x1(n)nf = xa(n)n!  (mod p").
Then, for any q coprime to pN1Na, the L-functions satisfy the integrality condition:

(1= x1(0)d" (1 = x1 (PP ) L=k, x1), (1 = x2(@)a"™ ) (1 = x2(p)p") L(~1, x2) € OF,
and the congruence:

(1= x1()g" ™) (1 = x1(p)p") Lk, x1) = (1 = x2(0)d"™) (L = x2(p)p')L(—1,x2) (mod p").
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This theorem will specialize to both the usual Kummer congruences as well the Von Staudt-
Clausen theorem as we will show later.

Proof. As before, let f1(n) = x1(n)n* and fa(n) = x2(n)n'. The strategy of the proof is the
same as before. The additional wrinkle in this case is that if x(n) = 1 or the conductor is
divisible by p, then the exponents « of 6,(n)x(n)n* will not be such that o — 1 is a unit in
K,.
To fix this, for ¢ coprime to p, define:
= fi=xa(@)g" " Dylfi] = xa(m)n® = (14 G + G+ + ¢ pa ()t
= (G G G ()

and similarly for hy.The above expression also shows that the exponents of h; are non
trivial ¢/V;- roots of unity. Note also that under our hypothesis:

h(n) = ha(n) (mod p).
Note also that:
S(h1) = (1 — xa(@)d"™H2(f1)
and similarly for ho. This done, the rest of the proof proceeds much the same as before.
Therefore, define:
gi(n) = Op(n) fi(n)

and once again, we have:

g91(n) = ga(n)  (mod p”)
and the exponents « of g;(n) — g2(n) are such that a — 1 is a unit. We can also calculate
¥.(gi) as before:

bph1 = h1 = x1(p)p" D[]
since (;" — C;'n/ P simply permutes the non trivial g-roots of unity. Applying X:
R(g1) = (1= xa(@)p")E(h1) = (1 = xa(@)p") (1 = xa(9)a" ) Z(f).
Applying Theorem 11 to g1, g individually gives us the integrality condition:
(1 =x1(0)d"™) (1 = xa (PP L=k, x1), (1 = x2(@)d™ ) (1 = xa(p)p') L(~1, x2) € Ok,
and applying it to g1 — g2 gives us:
(1= x1(@d" (A = x1 (P L(=k x1) = (1 = x2(0)d" (1 = x2(p)p) L(~L,x2)  (mod p").

O

We can specialize to get useful theorems:

Corollary 14 (Generalized Kummer Congruences). Suppose x1(q)q"™! and x2(q)q' are co-
prime to p. Then:

(1= xa()p")L(=k, x1) = (1 = x2(p)p ) L(~, x2)  (mod p").
In particular,if x1 = x2 = land (p — 1) { (k+ 1)(I+ 1) and k =1 (mod (p — 1)p"™1), then:
(1=p")¢(=k) = (1= p")¢(=1)  (mod p").
This final expression is the standard form for the Kummer congruences.
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Corollary 15 (Kummer Congruences with Teichmuller characters). Let w : (Z/pZ) —
Z(pp—1) be the Teichmuller character. That is, w(n) is the unique p-th root of unity such that
w(n) =n (mod p). Let p be a prime of Q(,—1) lying over p. Then for non negative integers k,
such that k + 1 is not divisble by p — 1, we have:

¢(=k —1) = L(—k,") (mod p).
Specializing even more:

C(1—k)=L(-1,u*2) (mod p).
Remark 16. This final form is used in Ribet’s paper on the converse to Herbrand-Ribet
to prove congruences between modular forms of different level (and weight) and plays a

cruical role in the proof. Ribet proves the congruence using an explicit representation of
L(—1,€) in terms of Bernoulli numbers.

Suppose again that x1 = x2 = 1. We will show in the next section that ((—k) = Bj41/(x+1)
where By, is the k-th Bernoulli number. We can therefore use the above results to gain
p-adic information about the Bernouli numbers.

Corollary 17 (p-adic Valuation of the Bernoulli numbers). The denominator of By, can only be
divisible by a prime p to the first power. Further, this can only happen if (p — 1)|n.

Proof. Let p"—! be the highest power of p that divides k + 1. That is, v,(k + 1) = r — 1. By
the above, we know that for any ¢ coprime to p:

B
(@ = 1¢(R) = (@ - 1) € 7,

First suppose that (p — 1) 1 (k + 1). Choose ¢ so that ¢"*! # 1 (mod p). Taking valuations,
this shows:

Up(Biy1) > vp(k+1) =7 > 0.

Next, suppose that (p — 1)|(k + 1). In this case, choose ¢ so that v,(¢"*! — 1) = r. This
can be done by taking ¢ to be a cyclic generator of the cyclic group (Z/p"1Z)*. Taking
valuations:

vp(¢" " = 1) + vp(Bry1) — vp(k + 1)
= 1+ vp(Bry1) — (r—1)
= Up(Bit1)

0
0

(AVARAVARLY,

—1

0

Remark 18. In fact, in the case that p — 1|(k + 1), the denominator is actually divisible by
p and moreover, the numerator is coprime to p. In other words, v,(¢(—k)) = 1 4+ v,(k + 1)
in this case. It might be interesting to prove this using the techniques here.

9. EXPLICIT COMPUTATION OF SPECIAL VALUES OF DIRICHLET L-FUNCTIONS

This is the only entirely original section of this note. I will compute the explicit values of
Dirichlet L-functions in terms of the Bernoulli numbers. Let us first begin with Dirichlet
L-functions with non trivial character.
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Theorem 19. For x : Z/ fZ — C* a non trivial Dirichlet character and k a non negative integer,
we have:

Bii1,
Li=ho) = =577

where the By, are defined by the exponential generating function:

ZX Z k,xk|

Proof. The idea is simple, as outlined in the introduction. Let us take our base field & =
Q(x)((t)). This is a non archimedean complete field in a natural way with ring of integers
R = Q(x)[[t]] and the results of section 7 are applicable.

In particular, recall that A is the set of sequences taking values in R and for which the
exponents « are such that o —1 is a unit. Then, we showed that ¥ : A — R is a continuous
functional.

In particular, for a sequence g € A such that lim g, = g € A, we have limj, 3(gx) = 2(g).
Let us take

i=0

It is easy to see that g = limy g, = x(n)e™ € A. This is because the exponents associated to
x(n) are all roots of unity and not equal to 1 (see example 4, section 4) and the exponents of
g are therefore of the form e’(y for (; a non trivial f-th root of unity of 1. Certainly, e'(; — 1
is a unit in R.

However, it is also easy to compute the action of ¥ on g; and g. By definition, we have:
k si
S(ge) =) L(—i, X) oy
i=0

and therefore:
hm ¥(gk) Z L(—

On the other hand:
! et 1 & tk
Y(g) = ZX(G)W =7 Z —Bk,xg-
a:l :0 :

Since ¥(g) = lim ¥(gx), on equation the coefficients of their respective power series expan-
sions, we have:
B
L1 —kx) = =%

O

If we try to adapt the above proof to the case of the Riemann zeta function by letting x be
the trivial function, we come across the problem that g(n) = limy gx(n) = €™ is not in A.
The corresponding « is just ¢! and certainly, ¢! — 1 is not a unit in R.

We came across a similar problem while proving the Kummer congruences and we will
solve this in a similar way.
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Instead of calculating ¢(—k), let us instead calculate (1 — 2¥+1)¢(—Fk). The corresponding
series for this is:

fi(n) = n' — 2" Dy[n'] = —(—1)"n’.
Clearly, fi(n) has exponent —1 and —1 — 1 = 2 is a unitin R.

As before, let us define:

.
) = Y ~(-1yn'’
=0
Now, g = limy gr = —(—1)"e". This is in A since the exponent is —e’. Repeating the
calculations as before will show:
k+1 k tk el
1-2 —k)— = .
S0 = 1
k>0
It is now a simple verification that ((—k) = — i’fll satisfies the above equation. Indeed,

substituting the above value for {(—k) and using the exponential generating function for
By, we have:

tk tk
(1=2"N((=k)5 =) —(1-2""YByy
];_0 k! kzzo k4 1)
1 t 1 ot
__t<1—€¢_1>+t<1—e4”_1>
1
1l 4et

and we have therefore proven:

Theorem 20. For k a non negative integer and By, the Bernoulli Number, we have:

(k) =~
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